MoNoSLAM:https://github.com/hanmekim/SceneLib2

以扩展卡尔曼滤波为后端,追踪前端非常稀疏的特征点,以相机的当前状态和所有路标点为状态量,更新其均值和协方差。

优点:在2007年,随着计算机性能的提升,以及该系统用稀疏的方式处理图像,使得该方案使得SLAM系统能够在线运行。(之前的SLAM系统是基本不能在线运行的,只能靠机器人携带相机采集的数据,再离线进行定位和建图。)

缺点:MoNoSLAM存在应用场景窄,路标数量有限,系数特征点非常容易丢失等缺点,现在已经停止了对其开发。

PTAM( Parallel Tracking And Mapping )http://www.robots.ox.ac.uk/~gk/PTAM

主要原理是: 从摄影图像上捕捉特征点,然后检测出平面,在检测出的平面上建立虚拟的3D坐标,然后合成摄影图像和CG。其中,独特之处在于,立体平面的检测和图像的合成采用并行处理。

优点:提出并实现了跟踪与建图过程的并行化,将前后端分离,使用非线性优化方案,既可以实时的定位与建图,也可以在虚拟平面上叠加物体。

缺点:场景小,跟踪容易丢失。

ORB-SLAM(继承并改进PTAM)http://webdiis.unizar.es/~raulmur/orbslam/

优点:泛用性:支持单目,双目,RGB-D三种模式。整个系统围绕ORB特征进行计算,在效率与精度之间做到了平衡,并围绕特征点进行了优化。其回环检测算法可以有效地防止误差的积累。使用三个线程完成SLAM,取得了较好的跟踪和建图效果,能够保证轨迹和地图的全局一致性。

缺点:对于每幅图像都需要计算ORB特征耗时大。三线程给CPU带来较大负担,在一直到嵌入式设备上有一定的困难,ORB-SLAM的建图为稀疏特征点,只能满足定位功能。

LSD-SLAM(Large Scale Direct monocular SLAM)

将单目直接发应用到了半稠密的单目SLAM中,不需要计算特征点,还能构建版稠密地图.

优点:直接法是针对像素进行的;对特征缺失区域不敏感,半稠密追踪可以保证追踪的实时性和稳定性;在cpu上实现了半稠密地图的重建。

缺点:对相机内参和曝光非常敏感,并且在相机快速运动时容易丢失,在回环检测部分,没有直接基于直接发实现,依赖特征点方程进行回环检测,尚未完全摆脱特征点的计算。

SVO( Semi-direct Visual Odoemtry )

基于稀疏直接法的视觉里程计,在实现中,使用了4x4的小块进行块匹配,估计相机资自身的运动。

优点:速度极快,在低端计算平台上也能达到实时性,适合计算平台受限的场合。

缺点:在平视相机中表现不佳;舍弃了后端优化和回环检测部分,SVO的位姿估计存在累计误差,并且丢失后不太容易进行重定位。

RTAB-MAP(RGB-D传感器上的SLAM方案)

给出了一套完整的RGB-D SLAM方案,目前可以直接从ROS中获得其二进制程序,在Google Project Tango上可以获得其APP直接使用。

优点:原理简单;支持RGB-D和双目传感器,且提供实时的定位和建图功能。

缺点:集成度高,庞大,在其上进行二次开发困难,适合作为SLAM应用而非研究使用。

视觉SLAM的方案总结的更多相关文章

  1. 83 项开源视觉 SLAM 方案够你用了吗?

    作者:吴艳敏 来源:83 项开源视觉 SLAM 方案够你用了吗? 前言 1. 本文由知乎作者小吴同学同步发布于https://zhuanlan.zhihu.com/p/115599978/并持续更新. ...

  2. (转) SLAM系统的研究点介绍 与 Kinect视觉SLAM技术介绍

          首页 视界智尚 算法技术 每日技术 来打我呀 注册     SLAM系统的研究点介绍 本文主要谈谈SLAM中的各个研究点,为研究生们(应该是博客的多数读者吧)作一个提纲挈领的摘要.然后,我 ...

  3. 视觉SLAM

    SLAM:Simultaneous Localization And Mapping.中文:同时定位与地图重建. 它是指搭载特定传感器的主体,在没有实验先验信息的情况下,于运动过程中建立环境的模型,同 ...

  4. 如何从零开始系统化学习视觉SLAM?

    由于显示格式问题,建议阅读原文:如何从零开始系统化学习视觉SLAM? 什么是SLAM? SLAM是 Simultaneous Localization And Mapping的 英文首字母组合,一般翻 ...

  5. 高翔《视觉SLAM十四讲》从理论到实践

    目录 第1讲 前言:本书讲什么:如何使用本书: 第2讲 初始SLAM:引子-小萝卜的例子:经典视觉SLAM框架:SLAM问题的数学表述:实践-编程基础: 第3讲 三维空间刚体运动 旋转矩阵:实践-Ei ...

  6. 视觉SLAM漫淡

    视觉SLAM漫谈 1.    前言 开始做SLAM(机器人同时定位与建图)研究已经近一年了.从一年级开始对这个方向产生兴趣,到现在为止,也算是对这个领域有了大致的了解.然而越了解,越觉得这个方向难度很 ...

  7. 激光SLAM Vs 视觉SLAM

    博客转载自:https://www.leiphone.com/news/201707/ETupJVkOYdNkuLpz.html 雷锋网(公众号:雷锋网)按:本文作者SLAMTEC(思岚科技公号sla ...

  8. 《视觉SLAM十四讲》第2讲

    目录 一 视觉SLAM中的传感器 二 经典视觉SLAM框架 三 SLAM问题的数学表述 注:原创不易,转载请务必注明原作者和出处,感谢支持! 本讲主要内容: (1) 视觉SLAM中的传感器 (2) 经 ...

  9. 激光SLAM与视觉SLAM的特点

    激光SLAM与视觉SLAM的特点 目前,SLAM技术被广泛运用于机器人.无人机.无人驾驶.AR.VR等领域,依靠传感器可实现机器的自主定位.建图.路径规划等功能.由于传感器不同,SLAM的实现方式也有 ...

随机推荐

  1. 【前端开发】--js弹框

    js三种弹框 一.普通弹框 这类弹框就是仅仅是个提示作用,并不会做其它操作 关键词:alert()    这个没啥好说的,就是一个弹框.  二.判断弹框     这类框有一个判断作用 关键字:conf ...

  2. HDU 1060 Leftmost Digit 基础数论

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1060   这道题运用的是数学方法. 假设S=n^n.两边同时取对数,得到lgS=nlgn.即有S=10 ...

  3. CCF-201403-3-命令行选项

    问题描述 试题编号: 201403-3 试题名称: 命令行选项 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 请你写一个命令行分析程序,用以分析给定的命令行里包含哪些选项.每 ...

  4. 【练习】HTML+CSS

    作业要求1 京东首页轮播图,效果如下 <!DOCTYPE html> <html lang="en"> <head> <meta char ...

  5. 《算法》C/C++ 图形处理

    概述 一般图形输出无法就是用循环输出 ,提前构造好图形. 两种方式 ** 模拟法直接输出** ** 二维数组 构造输出** 问题描述 利用字母可以组成一些美丽的图形,下面给出了一个例子: ABCDEF ...

  6. java并发编程的艺术——第四章总结

    第四章并发编程基础 4.1线程简介 4.2启动与终止线程 4.3线程间通信 4.4线程应用实例 java语言是内置对多线程支持的. 为什么使用多线程: 首先线程是操作系统最小的调度单元,多核心.多个线 ...

  7. 【quickhybrid】H5和Native交互原理

    前言 Hybrid架构的核心就是JSBridge交互,而实现这个交互的前提是弄清楚H5和Native端的交互 本文主要介绍Native端(Android/iOS)和H5端(泛指前端)的交互原理 (之前 ...

  8. gcc/g++ 命令的经常使用选项

    gcc/g++ 命令的经常使用选项格式(选项 解释) -o FILE 指定输出文件名称.在编译为目标代码时,这一选项不是必须的.假设FILE没有指定,缺省文件名称是a.out. -c 仅仅编译生成目标 ...

  9. JS 循环遍历JSON数据 分类: JS技术 JS JQuery 2010-12-01 13:56 43646人阅读 评论(5) 收藏 举报 jsonc JSON数据如:{&quot;options&quot;:&quot;[{

    JS 循环遍历JSON数据 分类: JS技术 JS JQuery2010-12-01 13:56 43646人阅读 评论(5) 收藏 举报 jsonc JSON数据如:{"options&q ...

  10. MyBatis SQL处理大于、小于号

    MyBatis mapper文件是xml文件,需要特殊字符如大于号.小于号后需要转义. 原字符 转义后字符 < < <= <= > > > >=