POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)

Description

Write a program that takes as input a rooted tree and a list of pairs of vertices. For each pair (u,v) the program determines the closest common ancestor of u and v in the tree. The closest common ancestor of two nodes u and v is the node w that is an ancestor of both u and v and has the greatest depth in the tree. A node can be its own ancestor (for example in Figure 1 the ancestors of node 2 are 2 and 5)

Input

The data set, which is read from a the std input, starts with the tree description, in the form:

nr_of_vertices

vertex:(nr_of_successors) successor1 successor2 ... successorn

...

where vertices are represented as integers from 1 to n ( n <= 900 ). The tree description is followed by a list of pairs of vertices, in the form:

nr_of_pairs

(u v) (x y) ...

The input file contents several data sets (at least one).

Note that white-spaces (tabs, spaces and line breaks) can be used freely in the input.

Output

For each common ancestor the program prints the ancestor and the number of pair for which it is an ancestor. The results are printed on the standard output on separate lines, in to the ascending order of the vertices, in the format: ancestor:times

For example, for the following tree:

Sample Input

5

5:(3) 1 4 2

1:(0)

4:(0)

2:(1) 3

3:(0)

6

(1 5) (1 4) (4 2)

(2 3)

(1 3) (4 3)

Sample Output

2:1

5:5

Http

POJ:https://vjudge.net/problem/POJ-1470

Source

最近公共祖先LCA

题目大意

给出一棵树,统计若干组对最近公共祖先的询问,输出每个点被统计为最近公共祖先多少次

解决思路

这个题就是多次统计LCA,笔者在这里采用在线倍增的方法,具体操作可以看笔者之前的文章

这个题最恶心的地方就是输入了

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std; const int maxN=901;
const int inf=2147483647; int n;
int root;
vector<int> E[maxN];
int Parent[maxN][20];
int Depth[maxN];
int Cnt[maxN];
bool vis[maxN]; void LCA_init();
void dfs(int u);
int LCA(int a,int b); int main()
{
while (cin>>n)
{
for (int i=1;i<=n;i++)
E[i].clear();
memset(Parent,0,sizeof(Parent));
memset(Depth,0,sizeof(Depth));
memset(Cnt,0,sizeof(Cnt));
memset(vis,0,sizeof(vis));
for (int i=1;i<=n;i++)//-------输入开始-------
{
int u,nn;
scanf("%d:(%d)",&u,&nn);
for (int j=1;j<=nn;j++)
{
int v;
scanf("%d",&v);
E[u].push_back(v);
vis[v]=1;
}
}
for (int i=1;i<=n;i++)
if (vis[i]==0)
{
root=i;
break;
}
LCA_init();
int Q;
scanf("%d",&Q);
for (int i=1;i<=Q;i++)
{
int u,v;
scanf(" (%d %d)",&u,&v);
//cout<<LCA(u,v)<<endl;
Cnt[LCA(u,v)]++;
}//-------输入结束-------
for (int i=1;i<=n;i++)
if (Cnt[i]!=0)
printf("%d:%d\n",i,Cnt[i]);
}
return 0;
} void LCA_init()//LCA初始化
{
Depth[root]=0;
dfs(root);
/*for (int i=1;i<=n;i++)
{
for (int j=0;j<=15;j++)
cout<<Parent[i][j]<<' ';
cout<<endl;
}
cout<<endl;*/
for (int j=1;j<=15;j++)
for (int i=1;i<=n;i++)
Parent[i][j]=Parent[Parent[i][j-1]][j-1];
/*for (int i=1;i<=n;i++)
{
for (int j=0;j<=15;j++)
cout<<Parent[i][j]<<' ';
cout<<endl;
}*/
return;
} void dfs(int u)
{
for (int i=0;i<E[u].size();i++)
{
int v=E[u][i];
Depth[v]=Depth[u]+1;
Parent[v][0]=u;
//cout<<"---"<<v<<' '<<Parent[v][0]<<endl;
dfs(v);
}
return;
} int LCA(int a,int b)//倍增法计算LCA
{
if (Depth[a]<Depth[b])
swap(a,b);
for (int i=15;i>=0;i--)
if ((Parent[a][i]!=0)&&(Depth[Parent[a][i]]>=Depth[b]))
a=Parent[a][i];
if (a==b)
return a;
for (int i=15;i>=0;i--)
if ((Parent[a][i]!=0)&&(Parent[b][i]!=0)&&(Parent[a][i]!=Parent[b][i]))
{
a=Parent[a][i];
b=Parent[b][i];
}
return Parent[a][0];
}

POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)的更多相关文章

  1. POJ 1330 Nearest Common Ancestors (最近公共祖先LCA + 详解博客)

    LCA问题的tarjan解法模板 LCA问题 详细 1.二叉搜索树上找两个节点LCA public int query(Node t, Node u, Node v) { int left = u.v ...

  2. POJ 1470 Closest Common Ancestors 【LCA】

    任意门:http://poj.org/problem?id=1470 Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000 ...

  3. POJ 1470 Closest Common Ancestors (LCA,离线Tarjan算法)

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 13372   Accept ...

  4. POJ 1470 Closest Common Ancestors

    传送门 Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 17306   Ac ...

  5. POJ 1470 Closest Common Ancestors (LCA, dfs+ST在线算法)

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 13370   Accept ...

  6. poj——1470 Closest Common Ancestors

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 20804   Accept ...

  7. POJ 1470 Closest Common Ancestors【近期公共祖先LCA】

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/u013912596/article/details/35311489 题目链接:http://poj ...

  8. POJ 1470 Closest Common Ancestors (最近公共祖先LCA 的离线算法Tarjan)

    Tarjan算法的详细介绍,请戳: http://www.cnblogs.com/chenxiwenruo/p/3529533.html #include <iostream> #incl ...

  9. poj 1470 Closest Common Ancestors LCA

    题目链接:http://poj.org/problem?id=1470 Write a program that takes as input a rooted tree and a list of ...

随机推荐

  1. OpenCv关于灰度积分图的SSE代码学习和改进。

    最近一直沉迷于SSE方面的优化,实在找不到想学习的参考资料了,就拿个笔记本放在腿上翻翻OpenCv的源代码,无意中看到了OpenCv中关于积分图的代码,仔细研习了一番,觉得OpenCv对SSE的灵活运 ...

  2. springcloud(八):配置中心服务化和高可用

    在前两篇的介绍中,客户端都是直接调用配置中心的server端来获取配置文件信息.这样就存在了一个问题,客户端和服务端的耦合性太高,如果server端要做集群,客户端只能通过原始的方式来路由,serve ...

  3. 安装配置rsync服务端

    rsync是类unix系统下的数据镜像备份工具——remote sync.一款快速增量备份工具 Remote Sync,远程同步 支持本地复制,或者与其他SSH.rsync主机同步. rsync使用方 ...

  4. docker dead but pid file exists 问题

    You may have to enable the public_ol6_latest repo in order to get this package. sudo yum-config-mana ...

  5. vue入门须知

    1.vue基本结构 <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> & ...

  6. 微信JS-SDK开发 入门指南

    目录 前言 1. 过程 1.1 代码 1.2 代理 1.3 下载 1.4 解压 1.5 运行 1.6 查看 2. 微信接口测试 2.1 申请测试帐号 2.1.1 测试号信息 2.1.2 接口配置信息 ...

  7. 详解python之反射机制

    一.前言 def f1(): print('f1') def f2(): print('f2') def f3(): print('f3') def f4(): print('f4') a = 1 t ...

  8. Android网络请求框架AsyncHttpClient实例详解(配合JSON解析调用接口)

    最近做项目要求使用到网络,想来想去选择了AsyncHttpClient框架开进行APP开发.在这里把我工作期间遇到的问题以及对AsyncHttpClient的使用经验做出相应总结,希望能对您的学习有所 ...

  9. .NET链接Oracle 参数绑定问题

    在.NET项目中链接Oracle使用的驱动是 Oracle.ManagedDataAccess.dll ,这里下载 所遇到的问题 使用存储过程一个参数没有问题,发现两个或两个以上会有参数没传过来的现象 ...

  10. Ubuntu下用cue文件对ape和wav文件自动分轨

    很多音乐CD的镜像文件都带cue格式的分轨文件,在Ubuntu Linux下可以通过一些工具来实现自动分轨. 一.Ubuntu下需要安装的工具有flac,shntool,libav-tools $ s ...