POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)
POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)
Description
Write a program that takes as input a rooted tree and a list of pairs of vertices. For each pair (u,v) the program determines the closest common ancestor of u and v in the tree. The closest common ancestor of two nodes u and v is the node w that is an ancestor of both u and v and has the greatest depth in the tree. A node can be its own ancestor (for example in Figure 1 the ancestors of node 2 are 2 and 5)
Input
The data set, which is read from a the std input, starts with the tree description, in the form:
nr_of_vertices
vertex:(nr_of_successors) successor1 successor2 ... successorn
...
where vertices are represented as integers from 1 to n ( n <= 900 ). The tree description is followed by a list of pairs of vertices, in the form:
nr_of_pairs
(u v) (x y) ...
The input file contents several data sets (at least one).
Note that white-spaces (tabs, spaces and line breaks) can be used freely in the input.
Output
For each common ancestor the program prints the ancestor and the number of pair for which it is an ancestor. The results are printed on the standard output on separate lines, in to the ascending order of the vertices, in the format: ancestor:times
For example, for the following tree:

Sample Input
5
5:(3) 1 4 2
1:(0)
4:(0)
2:(1) 3
3:(0)
6
(1 5) (1 4) (4 2)
(2 3)
(1 3) (4 3)
Sample Output
2:1
5:5
Http
POJ:https://vjudge.net/problem/POJ-1470
Source
最近公共祖先LCA
题目大意
给出一棵树,统计若干组对最近公共祖先的询问,输出每个点被统计为最近公共祖先多少次
解决思路
这个题就是多次统计LCA,笔者在这里采用在线倍增的方法,具体操作可以看笔者之前的文章
这个题最恶心的地方就是输入了
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int maxN=901;
const int inf=2147483647;
int n;
int root;
vector<int> E[maxN];
int Parent[maxN][20];
int Depth[maxN];
int Cnt[maxN];
bool vis[maxN];
void LCA_init();
void dfs(int u);
int LCA(int a,int b);
int main()
{
while (cin>>n)
{
for (int i=1;i<=n;i++)
E[i].clear();
memset(Parent,0,sizeof(Parent));
memset(Depth,0,sizeof(Depth));
memset(Cnt,0,sizeof(Cnt));
memset(vis,0,sizeof(vis));
for (int i=1;i<=n;i++)//-------输入开始-------
{
int u,nn;
scanf("%d:(%d)",&u,&nn);
for (int j=1;j<=nn;j++)
{
int v;
scanf("%d",&v);
E[u].push_back(v);
vis[v]=1;
}
}
for (int i=1;i<=n;i++)
if (vis[i]==0)
{
root=i;
break;
}
LCA_init();
int Q;
scanf("%d",&Q);
for (int i=1;i<=Q;i++)
{
int u,v;
scanf(" (%d %d)",&u,&v);
//cout<<LCA(u,v)<<endl;
Cnt[LCA(u,v)]++;
}//-------输入结束-------
for (int i=1;i<=n;i++)
if (Cnt[i]!=0)
printf("%d:%d\n",i,Cnt[i]);
}
return 0;
}
void LCA_init()//LCA初始化
{
Depth[root]=0;
dfs(root);
/*for (int i=1;i<=n;i++)
{
for (int j=0;j<=15;j++)
cout<<Parent[i][j]<<' ';
cout<<endl;
}
cout<<endl;*/
for (int j=1;j<=15;j++)
for (int i=1;i<=n;i++)
Parent[i][j]=Parent[Parent[i][j-1]][j-1];
/*for (int i=1;i<=n;i++)
{
for (int j=0;j<=15;j++)
cout<<Parent[i][j]<<' ';
cout<<endl;
}*/
return;
}
void dfs(int u)
{
for (int i=0;i<E[u].size();i++)
{
int v=E[u][i];
Depth[v]=Depth[u]+1;
Parent[v][0]=u;
//cout<<"---"<<v<<' '<<Parent[v][0]<<endl;
dfs(v);
}
return;
}
int LCA(int a,int b)//倍增法计算LCA
{
if (Depth[a]<Depth[b])
swap(a,b);
for (int i=15;i>=0;i--)
if ((Parent[a][i]!=0)&&(Depth[Parent[a][i]]>=Depth[b]))
a=Parent[a][i];
if (a==b)
return a;
for (int i=15;i>=0;i--)
if ((Parent[a][i]!=0)&&(Parent[b][i]!=0)&&(Parent[a][i]!=Parent[b][i]))
{
a=Parent[a][i];
b=Parent[b][i];
}
return Parent[a][0];
}
POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)的更多相关文章
- POJ 1330 Nearest Common Ancestors (最近公共祖先LCA + 详解博客)
LCA问题的tarjan解法模板 LCA问题 详细 1.二叉搜索树上找两个节点LCA public int query(Node t, Node u, Node v) { int left = u.v ...
- POJ 1470 Closest Common Ancestors 【LCA】
任意门:http://poj.org/problem?id=1470 Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000 ...
- POJ 1470 Closest Common Ancestors (LCA,离线Tarjan算法)
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 13372 Accept ...
- POJ 1470 Closest Common Ancestors
传送门 Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 17306 Ac ...
- POJ 1470 Closest Common Ancestors (LCA, dfs+ST在线算法)
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 13370 Accept ...
- poj——1470 Closest Common Ancestors
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 20804 Accept ...
- POJ 1470 Closest Common Ancestors【近期公共祖先LCA】
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/u013912596/article/details/35311489 题目链接:http://poj ...
- POJ 1470 Closest Common Ancestors (最近公共祖先LCA 的离线算法Tarjan)
Tarjan算法的详细介绍,请戳: http://www.cnblogs.com/chenxiwenruo/p/3529533.html #include <iostream> #incl ...
- poj 1470 Closest Common Ancestors LCA
题目链接:http://poj.org/problem?id=1470 Write a program that takes as input a rooted tree and a list of ...
随机推荐
- python unittest 测试笔记(二):使用Requests
1. Requests 唯一的一个非转基因的 Python HTTP 库,人类可以安全享用.[Python Requests快速入门 :]http://cn.python-requests.org/z ...
- Java之进程与线程练习
1.设计一个线程类:创建3个子线程,每个线程分别打印数字,分别睡眠100,200,300ms ->每个执行都是20次 代码: package Homework; //1.设计一个线程类:创建3个 ...
- 刨根究底字符编码之十二——UTF-8究竟是怎么编码的
UTF-8究竟是怎么编码的 1. UTF-8编码是Unicode字符集的一种编码方式(CEF),其特点是使用变长字节数(即变长码元序列.变宽码元序列)来编码.一般是1到4个字节,当然,也可以更长. 为 ...
- Core ML 机器学习
在WWDC 2017开发者大会上,苹果宣布了一系列新的面向开发者的机器学习 API,包括面部识别的视觉 API.自然语言处理 API,这些 API 集成了苹果所谓的 Core ML 框架.Core M ...
- Python 基于TK 文本编辑器
#coding=utf-8 import sys,os import tkFileDialog from Tkinter import * from tkFont import Font print ...
- PHP验证码的制作教程
自己过去自学了PHP绘画验证码的教程,现在就把这一部分笔记跟大家分享,希望可以帮到大家. 顺带,我会在后面把我整理的一整套CSS3,PHP,MYSQL的开发的笔记打包放到百度云,有需要可以直接去百度云 ...
- 如何解决wamp中数据库读取数据是???的情况?
数据库中数据正常,但是从数据库读取出的数据在网页中显示时是???,该怎么办呢? 左键点击托盘区的WampServer图标,选择Mysql--my.ini,就会打开配置文件 1.在[client]段落增 ...
- 【CC2530入门教程-01】IAR集成开发环境的建立与项目开发流程
[引言] 本系列教程就有关CC2530单片机应用入门基础的实训案例进行分析,主要包括以下6部分的内容:1.CC2530单片机开发入门.2.通用I/O端口的输入和输出.3.外部中断初步应用.4.定时/计 ...
- JS 事件派发器EventDispatcher
在Java和AS中经常用到EventDispatcher,写了一个JS版本的. addListener :添加事件监听器 removeListener:移除事件监听器 dispatchEvent:派发 ...
- Python os模块--路径、文件、系统命令等操作
os模块包含普遍的操作系统功能. 注意:函数参数path是文件或目录的路径,filename是文件的路径,dirname是目录的路径,路径可以是相对路径,也可绝对路径 常见或重要的函数为加粗字体 os ...