/////////////////////////////////////////////////////////////////////////////////////////////////////// 
作者:stxy-ferryman
声明:本文遵循以下协议自由转载-非商用-非衍生-保持署名|Creative Commons BY-NC-ND 3.0 
查看本文更新与讨论请点击:http://www.cnblogs.com/stxy-ferryman/
链接被删请百度:stxy-ferryman
///////////////////////////////////////////////////////////////////////////////////////////////////////

Shaass has decided to hunt some birds. There are n horizontal electricity wires aligned parallel to each other. Wires are numbered 1 to n from top to bottom. On each wire there are some oskols sitting next to each other. Oskol is the name of a delicious kind of birds in Shaass's territory. Supposed there are ai oskols sitting on the i-th wire.

Sometimes Shaass shots one of the birds and the bird dies (suppose that this bird sat at the i-th wire). Consequently all the birds on the i-th wire to the left of the dead bird get scared and jump up on the wire number i - 1, if there exists no upper wire they fly away. Also all the birds to the right of the dead bird jump down on wire number i + 1, if there exists no such wire they fly away.

Shaass has shot m birds. You're given the initial number of birds on each wire, tell him how many birds are sitting on each wire after the shots.

Input

The first line of the input contains an integer n, (1 ≤ n ≤ 100). The next line contains a list of space-separated integers a1, a2, ..., an,(0 ≤ ai ≤ 100).

The third line contains an integer m, (0 ≤ m ≤ 100). Each of the next m lines contains two integers xi and yi. The integers mean that for the i-th time Shaass shoot the yi-th (from left) bird on the xi-th wire, (1 ≤ xi ≤ n, 1 ≤ yi). It's guaranteed there will be at least yi birds on the xi-th wire at that moment.

Output

On the i-th line of the output print the number of birds on the i-th wire.

Examples
input
5
10 10 10 10 10
5
2 5
3 13
2 12
1 13
4 6
output
0
12
5
0
16
input
3
2 4 1
1
2 2
output
3
0
3

题意:有个人闲着无聊去打电线上的绿鸭子,而他在打死一只蠢鸭子后,那只鸭子前面的鸭子向左的电线杆上飞,后面的向右飞,如果没了电线杆,它们就飞走了。最后问你每根电线杆上有几只鸭子。

题解:不必多说,模拟即可

代码:

var
a:array[..] of longint;
n,m,x,y,i,j,k:longint;
begin
readln(n);
for i:= to n do
read(a[i]);
readln(m);
for i:= to m do
begin
readln(x,y);
if x> then a[x-]:=a[x-]+y-;
if x<n then a[x+]:=a[x+]+a[x] -y;
a[x]:=;
end;
for i:= to n do
writeln(a[i]);
end.

CodeForces - 294A Shaass and Oskols的更多相关文章

  1. Codeforce 294A - Shaass and Oskols (模拟)

    Shaass has decided to hunt some birds. There are n horizontal electricity wires aligned parallel to ...

  2. Codeforces 294D - Shaass and Painter Robot

    294D - Shaass and Painter Robot 思路: 可以用数学归纳法证明一个结论:整个棋盘黑白相间当且仅当边缘黑白相间. 分奇偶讨论又可得出边缘黑色格个数为n+m-2 这样就可以暴 ...

  3. Codeforces 294B Shaass and Bookshelf:dp

    题目链接:http://codeforces.com/problemset/problem/294/B 题意: 有n本书,每本书的厚度为t[i],宽度为w[i] (1<=t[i]<=2, ...

  4. Codeforces K. Shaass and Bookshelf(动态规划三元组贪心)

    题目描述: B. Shaass and Bookshetime limit per test    2 secondsmemory limit per test 256 megabytesinput  ...

  5. Codeforces 294B Shaass and Bookshelf(记忆化搜索)

    题目 记忆化搜索(深搜+记录状态) 感谢JLGG //记忆话搜索 //一本书2中状态,竖着放或者横着放 //初始先都竖着放,然后从左边往右边扫 #include<stdio.h> #inc ...

  6. Codeforces 294E Shaass the Great

    树形DP.由于n只有5000,可以直接枚举边. 枚举边,将树分成两个子树,然后从每个子树中选出一个点分别为u,v,那么答案就是: 子树1中任意两点距离总和+子树2中任意两点距离总和+子树1中任意一点到 ...

  7. CodeForces 294B Shaass and Bookshelf 【规律 & 模拟】或【Dp】

    这道题目的意思就是排两排书,下面这排只能竖着放,上面这排可以平着放,使得宽度最小 根据题意可以得出一个结论,放上这排书的Width 肯定会遵照从小到大的顺序放上去的 Because the total ...

  8. Codeforces Round #178 (Div. 2)

    A. Shaass and Oskols 模拟. B. Shaass and Bookshelf 二分厚度. 对于厚度相同的书本,宽度竖着放显然更优. 宽度只有两种,所以枚举其中一种的个数,另一种的个 ...

  9. OUC_Summer Training_ DIV2_#13 723afternoon

    A - Shaass and Oskols Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I ...

随机推荐

  1. 使用Gateway-Worker实现多人分组实时聊天 结合第三方tp

    一.基础知识1.Workerman是一款纯PHP开发的开源高性能的PHP socket 服务器框架.被广泛的用于手机app.移动通讯等领域的开发. 支持TCP长连接,支持Websocket.HTTP等 ...

  2. iOS开发者的管理工具-CocoaPods安装

    1. 安装 Ruby 对于iOS开发者,CocoaPods是最方便使用的第三方管理工具了,但是怎么安装CocoaPods呢,安装CocoaPods之前,要确保mac已经安装上Ruby,但在安装Ruby ...

  3. 如何安装和配置 Rex-Ray?- 每天5分钟玩转 Docker 容器技术(74)

    Rex-Ray 是一个优秀的 Docker volume driver,本节将演示其安装和配置方法. Rex-Ray 以 standalone 进程的方式运行在 Docker 主机上,安装方法很简单, ...

  4. .h(头文件) .lib(库文件) .dll(动态链接库文件) 之间的关系和作用的区分

    .h头文件是编译时必须的,lib是链接时需要的,dll是运行时需要的.附加依赖项的是.lib不是.dll,若生成了DLL,则肯定也生成 LIB文件.如果要完成源代码的编译和链接,有头文件和lib就够了 ...

  5. Doing Homework again

     Doing Homework again Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I6 ...

  6. Reliability diagrams

    Reliability diagrams (Hartmann et al. 2002) are simply graphs of the Observed frequency of an event ...

  7. 模型组合(Model Combining)之Boosting与Gradient Boosting

    版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...

  8. Scala 中的隐式转换和隐式参数

    隐式定义是指编译器为了修正类型错误而允许插入到程序中的定义. 举例: 正常情况下"120"/12显然会报错,因为 String 类并没有实现 / 这个方法,我们无法去决定 Stri ...

  9. Python实战之文件操作的详细简单练习

    ['_CHUNK_SIZE', '__class__', '__del__', '__delattr__', '__dict__', '__dir__', '__doc__', '__enter__' ...

  10. windows2008(64位)下iis7.5中的url伪静态化重写(urlrewrite)

    以前在windows2003里,使用的是iis6.0,那时常使用的URL重写组件是iisrewrite,当服务器升级到windows2008R2时,IIS成了64位的7.5,结果iisreite组件是 ...