Regression:Generalized Linear Models
作者:桂。
时间:2017-05-22 15:28:43
链接:http://www.cnblogs.com/xingshansi/p/6890048.html

前言
主要记录python工具包:sci-kit learn的基本用法。
本文主要是线性回归模型,包括:
1)普通最小二乘拟合
2)Ridge回归
3)Lasso回归
4)其他常用Linear Models.
一、普通最小二乘
通常是给定数据X,y,利用参数
进行线性拟合,准则为最小误差:

该问题的求解可以借助:梯度下降法/最小二乘法,以最小二乘为例:

基本用法:
from sklearn import linear_model
reg = linear_model.LinearRegression()
reg.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2]) #拟合
reg.coef_#拟合结果
reg.predict(testdata) #预测
给出一个利用training data训练模型,并对test data预测的例子:
# -*- coding: utf-8 -*-
"""
Created on Mon May 22 15:26:03 2017 @author: Nobleding
""" print(__doc__) # Code source: Jaques Grobler
# License: BSD 3 clause import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score # Load the diabetes dataset
diabetes = datasets.load_diabetes() # Use only one feature
diabetes_X = diabetes.data[:, np.newaxis, 2] # Split the data into training/testing sets
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:] # Split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:] # Create linear regression object
regr = linear_model.LinearRegression() # Train the model using the training sets
regr.fit(diabetes_X_train, diabetes_y_train) # Make predictions using the testing set
diabetes_y_pred = regr.predict(diabetes_X_test) # The coefficients
print('Coefficients: \n', regr.coef_)
# The mean squared error
print("Mean squared error: %.2f"
% mean_squared_error(diabetes_y_test, diabetes_y_pred))
# Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % r2_score(diabetes_y_test, diabetes_y_pred)) # Plot outputs
plt.scatter(diabetes_X_test, diabetes_y_test, color='black')
plt.plot(diabetes_X_test, diabetes_y_pred, color='blue', linewidth=3) plt.xticks(())
plt.yticks(()) plt.show()

二、Ridge回归
Ridge是在普通最小二乘的基础上添加正则项:

同样可以利用最小二乘求解:

基本用法:
from sklearn import linear_model
reg = linear_model.Ridge (alpha = .5)
reg.fit ([[0, 0], [0, 0], [1, 1]], [0, .1, 1])
给出一个W随α变化的例子:
print(__doc__) import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model # X is the 10x10 Hilbert matrix
X = 1. / (np.arange(1, 11) + np.arange(0, 10)[:, np.newaxis])
y = np.ones(10)
n_alphas = 200
alphas = np.logspace(-10, -2, n_alphas) coefs = []
for a in alphas:
ridge = linear_model.Ridge(alpha=a, fit_intercept=False)
ridge.fit(X, y)
coefs.append(ridge.coef_) ax = plt.gca() ax.plot(alphas, coefs)
ax.set_xscale('log')
ax.set_xlim(ax.get_xlim()[::-1]) # reverse axis
plt.xlabel('alpha')
plt.ylabel('weights')
plt.title('Ridge coefficients as a function of the regularization')
plt.axis('tight')
plt.show()
可以看出alpha越小,w越大:

由于存在约束,何时最优呢?一个有效的方式是利用较差验证进行选取,利用Generalized Cross-Validation (GCV):
from sklearn import linear_model
reg = linear_model.RidgeCV(alphas=[0.1, 1.0, 10.0])
reg.fit([[0, 0], [0, 0], [1, 1]], [0, .1, 1])
reg.alpha_
三、Lasso回归
其实添加约束项可以推而广之:

p = 2就是Ridge回归,p = 1就是Lasso回归。
给出Lasso的准则函数:

基本用法:
from sklearn import linear_model
reg = linear_model.Lasso(alpha = 0.1)
reg.fit([[0, 0], [1, 1]], [0, 1])
reg.predict([[1, 1]])
四、ElasticNet
其实就是Lasso与Ridge的折中:

基本用法:
from sklearn.linear_model import ElasticNet
enet = ElasticNet(alpha=alpha, l1_ratio=0.7)
y_pred_enet = enet.fit(X_train, y_train).predict(X_test)
给出信号有Lasso以及ElasticNet回归的对比:
"""
========================================
Lasso and Elastic Net for Sparse Signals
======================================== Estimates Lasso and Elastic-Net regression models on a manually generated
sparse signal corrupted with an additive noise. Estimated coefficients are
compared with the ground-truth. """
print(__doc__) import numpy as np
import matplotlib.pyplot as plt from sklearn.metrics import r2_score ###############################################################################
# generate some sparse data to play with
np.random.seed(42) n_samples, n_features = 50, 200
X = np.random.randn(n_samples, n_features)
coef = 3 * np.random.randn(n_features)
inds = np.arange(n_features)
np.random.shuffle(inds)
coef[inds[10:]] = 0 # sparsify coef
y = np.dot(X, coef) # add noise
y += 0.01 * np.random.normal(size=n_samples) # Split data in train set and test set
n_samples = X.shape[0]
X_train, y_train = X[:n_samples // 2], y[:n_samples // 2]
X_test, y_test = X[n_samples // 2:], y[n_samples // 2:] ###############################################################################
# Lasso
from sklearn.linear_model import Lasso alpha = 0.1
lasso = Lasso(alpha=alpha) y_pred_lasso = lasso.fit(X_train, y_train).predict(X_test)
r2_score_lasso = r2_score(y_test, y_pred_lasso)
print(lasso)
print("r^2 on test data : %f" % r2_score_lasso) ###############################################################################
# ElasticNet
from sklearn.linear_model import ElasticNet enet = ElasticNet(alpha=alpha, l1_ratio=0.7) y_pred_enet = enet.fit(X_train, y_train).predict(X_test)
r2_score_enet = r2_score(y_test, y_pred_enet)
print(enet)
print("r^2 on test data : %f" % r2_score_enet) plt.plot(enet.coef_, color='lightgreen', linewidth=2,
label='Elastic net coefficients')
plt.plot(lasso.coef_, color='gold', linewidth=2,
label='Lasso coefficients')
plt.plot(coef, '--', color='navy', label='original coefficients')
plt.legend(loc='best')
plt.title("Lasso R^2: %f, Elastic Net R^2: %f"
% (r2_score_lasso, r2_score_enet))
plt.show()
Lasso比Elastic是要稀疏一些的:
五、Lasso回归求解
实际应用中,Lasso求解是一类问题——稀疏重构(Sparse reconstrction),顺便总结一下。
对于欠定方程:
其中
,且
,此时存在无穷多解,希望求解最稀疏的解:

大牛们已经证明:当矩阵A满足限制等距属性(Restricted isometry propety, RIP)条件时,上述问题可松弛为:

RIP条件(更多细节点击这里):

若y存在加性白噪声:
,则上述问题可以有三种处理形式(某种程度等效,未研究):

就是这几个问题都可以互相转化求解,以Lasso为例:这类方法很多,如投影梯度算法(Gradient Projection)、最小角回归(LARS)算法。
六、几种回归的联系
事实上,对于线性回归模型:
y = Wx + ε
ε为估计误差。
A-W为均匀分布(最小均方误差)

也就是:

B-W服从高斯分布(Ridge回归)

取对数:

等价于:

C-W服从拉普拉斯分布(Lasso回归)
与Ridge推导类似,得出:

三种情况对应的约束边界:

最小二乘:均匀分布就是无约束的情况。
Ridge:
Lasso:
这样对应图形来看就更明显了,可以看出对W的约束是越来越严格的。ElasticNet的情况虽然没有分析,也容易理解:它的限定条件一定介于菱形与圆形两边界之间。
七、其他
更多的拟合可以看链接,用到了补充了,这里列几个以前见过的。
A-最小角回归(Least Angle Regressive,LARS)
LARS算法点击这里。
基本用法:
from sklearn import linear_model
clf = linear_model.Lars(n_nonzero_coefs=1)
clf.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111])
print(clf.coef_)
B-正交匹配追踪(orthogonal matching pursuit, OMP)
OMP思路:

对应准则函数:

也可以写为:

本质上是对重建信号,不断从字典中找出最匹配的基,然后进行表达,表达后的残差:再从字典中找基进行表达,循环往复。
停止的基本条件通常有三类:1)达到指定的迭代次数;2)残差小于给定的门限;3)字典的任意基与残差的相关性小于给定的门限.
基本用法:
"""
===========================
Orthogonal Matching Pursuit
=========================== Using orthogonal matching pursuit for recovering a sparse signal from a noisy
measurement encoded with a dictionary
"""
print(__doc__) import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import OrthogonalMatchingPursuit
from sklearn.linear_model import OrthogonalMatchingPursuitCV
from sklearn.datasets import make_sparse_coded_signal n_components, n_features = 512, 100
n_nonzero_coefs = 17 # generate the data
################### # y = Xw
# |x|_0 = n_nonzero_coefs y, X, w = make_sparse_coded_signal(n_samples=1,
n_components=n_components,
n_features=n_features,
n_nonzero_coefs=n_nonzero_coefs,
random_state=0) idx, = w.nonzero() # distort the clean signal
##########################
y_noisy = y + 0.05 * np.random.randn(len(y)) # plot the sparse signal
########################
plt.figure(figsize=(7, 7))
plt.subplot(4, 1, 1)
plt.xlim(0, 512)
plt.title("Sparse signal")
plt.stem(idx, w[idx]) # plot the noise-free reconstruction
#################################### omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs)
omp.fit(X, y)
coef = omp.coef_
idx_r, = coef.nonzero()
plt.subplot(4, 1, 2)
plt.xlim(0, 512)
plt.title("Recovered signal from noise-free measurements")
plt.stem(idx_r, coef[idx_r]) # plot the noisy reconstruction
###############################
omp.fit(X, y_noisy)
coef = omp.coef_
idx_r, = coef.nonzero()
plt.subplot(4, 1, 3)
plt.xlim(0, 512)
plt.title("Recovered signal from noisy measurements")
plt.stem(idx_r, coef[idx_r]) # plot the noisy reconstruction with number of non-zeros set by CV
##################################################################
omp_cv = OrthogonalMatchingPursuitCV()
omp_cv.fit(X, y_noisy)
coef = omp_cv.coef_
idx_r, = coef.nonzero()
plt.subplot(4, 1, 4)
plt.xlim(0, 512)
plt.title("Recovered signal from noisy measurements with CV")
plt.stem(idx_r, coef[idx_r]) plt.subplots_adjust(0.06, 0.04, 0.94, 0.90, 0.20, 0.38)
plt.suptitle('Sparse signal recovery with Orthogonal Matching Pursuit',
fontsize=16)
plt.show()
结果图:

C-贝叶斯回归(Bayesian Regression)
其实就是将最小二乘的拟合问题转化为概率问题:

上面分析几种回归关系的时候,概率的部分就是贝叶斯回归的思想。
为什么贝叶斯回归可以避免overfitting?MLE对应最小二乘拟合,Bayessian Regression对应有约束的拟合,这个约束也就是先验概率
。
基本用法:
clf = BayesianRidge(compute_score=True)
clf.fit(X, y)
代码示例:
"""
=========================
Bayesian Ridge Regression
========================= Computes a Bayesian Ridge Regression on a synthetic dataset. See :ref:`bayesian_ridge_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the coefficient
weights are slightly shifted toward zeros, which stabilises them. As the prior on the weights is a Gaussian prior, the histogram of the
estimated weights is Gaussian. The estimation of the model is done by iteratively maximizing the
marginal log-likelihood of the observations. We also plot predictions and uncertainties for Bayesian Ridge Regression
for one dimensional regression using polynomial feature expansion.
Note the uncertainty starts going up on the right side of the plot.
This is because these test samples are outside of the range of the training
samples.
"""
print(__doc__) import numpy as np
import matplotlib.pyplot as plt
from scipy import stats from sklearn.linear_model import BayesianRidge, LinearRegression ###############################################################################
# Generating simulated data with Gaussian weights
np.random.seed(0)
n_samples, n_features = 100, 100
X = np.random.randn(n_samples, n_features) # Create Gaussian data
# Create weights with a precision lambda_ of 4.
lambda_ = 4.
w = np.zeros(n_features)
# Only keep 10 weights of interest
relevant_features = np.random.randint(0, n_features, 10)
for i in relevant_features:
w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_))
# Create noise with a precision alpha of 50.
alpha_ = 50.
noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples)
# Create the target
y = np.dot(X, w) + noise ###############################################################################
# Fit the Bayesian Ridge Regression and an OLS for comparison
clf = BayesianRidge(compute_score=True)
clf.fit(X, y) ols = LinearRegression()
ols.fit(X, y) ###############################################################################
# Plot true weights, estimated weights, histogram of the weights, and
# predictions with standard deviations
lw = 2
plt.figure(figsize=(6, 5))
plt.title("Weights of the model")
plt.plot(clf.coef_, color='lightgreen', linewidth=lw,
label="Bayesian Ridge estimate")
plt.plot(w, color='gold', linewidth=lw, label="Ground truth")
plt.plot(ols.coef_, color='navy', linestyle='--', label="OLS estimate")
plt.xlabel("Features")
plt.ylabel("Values of the weights")
plt.legend(loc="best", prop=dict(size=12))

D-多项式回归(Polynomial regression)
上文的最小二乘拟合可以理解成多元回归问题。多项式回归可以转化为多元回归问题。
对于

令

则

这就是多元回归问题了。
基本用法(阶数需指定):
print(__doc__) # Author: Mathieu Blondel
# Jake Vanderplas
# License: BSD 3 clause import numpy as np
import matplotlib.pyplot as plt from sklearn.linear_model import Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline def f(x):
""" function to approximate by polynomial interpolation"""
return x * np.sin(x) # generate points used to plot
x_plot = np.linspace(0, 10, 100) # generate points and keep a subset of them
x = np.linspace(0, 10, 100)
rng = np.random.RandomState(0)
rng.shuffle(x)
x = np.sort(x[:20])
y = f(x) # create matrix versions of these arrays
X = x[:, np.newaxis]
X_plot = x_plot[:, np.newaxis] colors = ['teal', 'yellowgreen', 'gold']
lw = 2
plt.plot(x_plot, f(x_plot), color='cornflowerblue', linewidth=lw,
label="ground truth")
plt.scatter(x, y, color='navy', s=30, marker='o', label="training points") for count, degree in enumerate([3, 4, 5]):
model = make_pipeline(PolynomialFeatures(degree), Ridge())
model.fit(X, y)
y_plot = model.predict(X_plot)
plt.plot(x_plot, y_plot, color=colors[count], linewidth=lw,
label="degree %d" % degree) plt.legend(loc='lower left') plt.show()
E-罗杰斯特回归(Logistic regression)
这个之前有梳理过。
L2约束(就是softmax衰减的情况):

也可以是L1约束:

基本用法:
"""
==============================================
L1 Penalty and Sparsity in Logistic Regression
============================================== Comparison of the sparsity (percentage of zero coefficients) of solutions when
L1 and L2 penalty are used for different values of C. We can see that large
values of C give more freedom to the model. Conversely, smaller values of C
constrain the model more. In the L1 penalty case, this leads to sparser
solutions. We classify 8x8 images of digits into two classes: 0-4 against 5-9.
The visualization shows coefficients of the models for varying C.
""" print(__doc__) # Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Mathieu Blondel <mathieu@mblondel.org>
# Andreas Mueller <amueller@ais.uni-bonn.de>
# License: BSD 3 clause import numpy as np
import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression
from sklearn import datasets
from sklearn.preprocessing import StandardScaler digits = datasets.load_digits() X, y = digits.data, digits.target
X = StandardScaler().fit_transform(X) # classify small against large digits
y = (y > 4).astype(np.int) # Set regularization parameter
for i, C in enumerate((100, 1, 0.01)):
# turn down tolerance for short training time
clf_l1_LR = LogisticRegression(C=C, penalty='l1', tol=0.01)
clf_l2_LR = LogisticRegression(C=C, penalty='l2', tol=0.01)
clf_l1_LR.fit(X, y)
clf_l2_LR.fit(X, y) coef_l1_LR = clf_l1_LR.coef_.ravel()
coef_l2_LR = clf_l2_LR.coef_.ravel() # coef_l1_LR contains zeros due to the
# L1 sparsity inducing norm sparsity_l1_LR = np.mean(coef_l1_LR == 0) * 100
sparsity_l2_LR = np.mean(coef_l2_LR == 0) * 100 print("C=%.2f" % C)
print("Sparsity with L1 penalty: %.2f%%" % sparsity_l1_LR)
print("score with L1 penalty: %.4f" % clf_l1_LR.score(X, y))
print("Sparsity with L2 penalty: %.2f%%" % sparsity_l2_LR)
print("score with L2 penalty: %.4f" % clf_l2_LR.score(X, y)) l1_plot = plt.subplot(3, 2, 2 * i + 1)
l2_plot = plt.subplot(3, 2, 2 * (i + 1))
if i == 0:
l1_plot.set_title("L1 penalty")
l2_plot.set_title("L2 penalty") l1_plot.imshow(np.abs(coef_l1_LR.reshape(8, 8)), interpolation='nearest',
cmap='binary', vmax=1, vmin=0)
l2_plot.imshow(np.abs(coef_l2_LR.reshape(8, 8)), interpolation='nearest',
cmap='binary', vmax=1, vmin=0)
plt.text(-8, 3, "C = %.2f" % C) l1_plot.set_xticks(())
l1_plot.set_yticks(())
l2_plot.set_xticks(())
l2_plot.set_yticks(()) plt.show()
8X8的figure,不同C取值:

F-随机梯度下降(Stochastic Gradient Descent, SGD)
基本用法:
from sklearn.linear_model import SGDClassifier
X = [[0., 0.], [1., 1.]]
y = [0, 1]
clf = SGDClassifier(loss="hinge", penalty="l2")
clf.fit(X, y)
其中涉及到:SGDClassifier,Linear classifiers (SVM, logistic regression, a.o.) with SGD training.提供了分类与回归的应用:
The classes
SGDClassifierandSGDRegressorprovide functionality to fit linear models for classification and regression using different (convex) loss functions and different penalties. E.g., withloss="log",SGDClassifierfits a logistic regression model, while withloss="hinge"it fits a linear support vector machine (SVM).
以分类为例:

clf = SGDClassifier(loss="log").fit(X, y)
其中loss:
'hinge', 'log', 'modified_huber', 'squared_hinge',\
'perceptron', or a regression loss: 'squared_loss', 'huber',\
'epsilon_insensitive', or 'squared_epsilon_insensitive'
应用实例:
print(__doc__) import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.linear_model import SGDClassifier # import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features. We could
# avoid this ugly slicing by using a two-dim dataset
y = iris.target
colors = "bry" # shuffle
idx = np.arange(X.shape[0])
np.random.seed(13)
np.random.shuffle(idx)
X = X[idx]
y = y[idx] # standardize
mean = X.mean(axis=0)
std = X.std(axis=0)
X = (X - mean) / std h = .02 # step size in the mesh clf = SGDClassifier(alpha=0.001, n_iter=100).fit(X, y) # create a mesh to plot in
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h)) # Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)
plt.axis('tight') # Plot also the training points
for i, color in zip(clf.classes_, colors):
idx = np.where(y == i)
plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i],
cmap=plt.cm.Paired)
plt.title("Decision surface of multi-class SGD")
plt.axis('tight') # Plot the three one-against-all classifiers
xmin, xmax = plt.xlim()
ymin, ymax = plt.ylim()
coef = clf.coef_
intercept = clf.intercept_ def plot_hyperplane(c, color):
def line(x0):
return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1] plt.plot([xmin, xmax], [line(xmin), line(xmax)],
ls="--", color=color) for i, color in zip(clf.classes_, colors):
plot_hyperplane(i, color)
plt.legend()
plt.show()

G-感知器(Perceptron)
之前梳理过。SGDClassifier中包含Perceptron。
H-随机采样一致(Random sample consensus, RANSAC)
之前梳理过。Ransac是数据预处理的操作。
基本用法:
ransac = linear_model.RANSACRegressor()
ransac.fit(X, y)
应用实例:
import numpy as np
from matplotlib import pyplot as plt from sklearn import linear_model, datasets n_samples = 1000
n_outliers = 50 X, y, coef = datasets.make_regression(n_samples=n_samples, n_features=1,
n_informative=1, noise=10,
coef=True, random_state=0) # Add outlier data
np.random.seed(0)
X[:n_outliers] = 3 + 0.5 * np.random.normal(size=(n_outliers, 1))
y[:n_outliers] = -3 + 10 * np.random.normal(size=n_outliers) # Fit line using all data
lr = linear_model.LinearRegression()
lr.fit(X, y) # Robustly fit linear model with RANSAC algorithm
ransac = linear_model.RANSACRegressor()
ransac.fit(X, y)
inlier_mask = ransac.inlier_mask_
outlier_mask = np.logical_not(inlier_mask) # Predict data of estimated models
line_X = np.arange(X.min(), X.max())[:, np.newaxis]
line_y = lr.predict(line_X)
line_y_ransac = ransac.predict(line_X) # Compare estimated coefficients
print("Estimated coefficients (true, linear regression, RANSAC):")
print(coef, lr.coef_, ransac.estimator_.coef_) lw = 2
plt.scatter(X[inlier_mask], y[inlier_mask], color='yellowgreen', marker='.',
label='Inliers')
plt.scatter(X[outlier_mask], y[outlier_mask], color='gold', marker='.',
label='Outliers')
plt.plot(line_X, line_y, color='navy', linewidth=lw, label='Linear regressor')
plt.plot(line_X, line_y_ransac, color='cornflowerblue', linewidth=lw,
label='RANSAC regressor')
plt.legend(loc='lower right')
plt.xlabel("Input")
plt.ylabel("Response")
plt.show()

参考:
- http://scikit-learn.org/dev/supervised_learning.html#supervised-learning
- https://www.zhihu.com/question/23536142
Regression:Generalized Linear Models的更多相关文章
- [Scikit-learn] 1.1 Generalized Linear Models - from Linear Regression to L1&L2
Introduction 一.Scikit-learning 广义线性模型 From: http://sklearn.lzjqsdd.com/modules/linear_model.html#ord ...
- [Scikit-learn] 1.5 Generalized Linear Models - SGD for Regression
梯度下降 一.亲手实现“梯度下降” 以下内容其实就是<手动实现简单的梯度下降>. 神经网络的实践笔记,主要包括: Logistic分类函数 反向传播相关内容 Link: http://pe ...
- [Scikit-learn] 1.1 Generalized Linear Models - Logistic regression & Softmax
二分类:Logistic regression 多分类:Softmax分类函数 对于损失函数,我们求其最小值, 对于似然函数,我们求其最大值. Logistic是loss function,即: 在逻 ...
- Popular generalized linear models|GLMM| Zero-truncated Models|Zero-Inflated Models|matched case–control studies|多重logistics回归|ordered logistics regression
============================================================== Popular generalized linear models 将不同 ...
- [Scikit-learn] 1.5 Generalized Linear Models - SGD for Classification
NB: 因为softmax,NN看上去是分类,其实是拟合(回归),拟合最大似然. 多分类参见:[Scikit-learn] 1.1 Generalized Linear Models - Logist ...
- 广义线性模型(Generalized Linear Models)
前面的文章已经介绍了一个回归和一个分类的例子.在逻辑回归模型中我们假设: 在分类问题中我们假设: 他们都是广义线性模型中的一个例子,在理解广义线性模型之前需要先理解指数分布族. 指数分布族(The E ...
- Andrew Ng机器学习公开课笔记 -- Generalized Linear Models
网易公开课,第4课 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 前面介绍一个线性回归问题,符合高斯分布 一个分类问题,logstic回 ...
- Generalized Linear Models
作者:桂. 时间:2017-05-22 15:28:43 链接:http://www.cnblogs.com/xingshansi/p/6890048.html 前言 主要记录python工具包:s ...
- [Scikit-learn] 1.1 Generalized Linear Models - Lasso Regression
Ref: http://blog.csdn.net/daunxx/article/details/51596877 Ref: https://www.youtube.com/watch?v=ipb2M ...
随机推荐
- Excel图表-创意雷达图-原创图表
p{ font-size: 15px; } .alexrootdiv>div{ background: #eeeeee; border: 1px solid #aaa; width: 99%; ...
- 腾讯IVWEB团队:WebRTC 点对点直播
作者:villainthr 摘自:villainhr WebRTC 全称为:Web Real-Time Communication.它是为了解决 Web 端无法捕获音视频的能力,并且提供了 peer- ...
- 收集下shell使用笔记
让进程转入后台: Ctrl + z 将进程转到前台: fg 产生随机的十六进制数,其中n是字符数: openssl rand -hex n 截取前5个字符: ${variable::} 一次创建多个目 ...
- Android系统结构
从上图中可以看出,Android系统架构为四层结构,从上层到下层分别是应用程序层.应用程序框架层.系统运行库层以及Linux内核层,分别介绍如下: (1)Appliacation Android平台不 ...
- alert 和 console.log的区别
出走半月,一直以为 console.log 和 alert 的用法是一样的,只是表现的形式不同,alert 是以弹框的形式出现,console.log 是在后台打印输出. 但是今天在写东西的时候,发现 ...
- Neuron:Neural activities in V1 create a bottom-up saliency map
Neural activities in V1 create a bottom-up saliency map 本文证明了人类的初级视皮层可以在视觉信息加工的非常早期阶段,生成视觉显著图,用以引导空间 ...
- lua 模块
lua 模块 概述 lua 模块类似于封装库 将相应功能封装为一个模块, 可以按照面向对象中的类定义去理解和使用 使用 模块文件示例程序 mod = {} mod.constant = "模 ...
- VS2003"无法启动调试 没有正确安装调试器"的解决方法
在用VS2003做项目的时候,经常调试程序,但是有时候回出现如下问题“无法启动调试,没有正确安装调试器,请运行安装程序或修复调试器”.第一次碰到还以为是运气不好,就重新用vs2003安装程序重新修复了 ...
- 如何快速理解JavaScript 中重要语句for循环
一.基本结构:for(起始状态:判断条件:状态改变){ 执行语句: } 执行顺序:for(var i=1;i<3;i++){ alert(i); } 1.判断条件 2.执行语句 3. ...
- pixi.js
添加基本文件(库文件) 渲染库 pixi.js pixi.lib.js是pixi.js的子集,依赖class.js,cat.js,event_emiter.js文件 pixi.scroller.js ...