Description

小T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨。股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N。在疯涨的K天中小T观察到:除第一天外每天的股价都比前一天高,且高出的价格(即当天的股价与前一天的股价之差)不会超过M,M为正整数。并且这些参数满足M(K-1)<N。
小T忘记了这K天每天的具体股价了,他现在想知道这K天的股价有多少种可能

Input

只有一行用空格隔开的四个数:N、K、M、P。对P的说明参见后面“输出格式”中对P的解释。
输入保证20%的数据M,N,K,P≤20000,保证100%的数据M,K,P≤109,N≤1018 。

Output

仅包含一个数,表示这K天的股价的可能种数对于P的模值。【输入输出样例】

Sample Input

7 3 2 997

Sample Output

16
【样例解释】
输出样例的16表示输入样例的股价有16种可能:
{1,2,3},{1,2,4},{1,3,4},{1,3,5}, {2,3,4},{2,3,5},{2,4,5},{2,4,6}, {3,4,5},{3,4,6},{3,5,6},{3,5,7},{4,5,6},{4,5,7},{4,6,7},{5,6,7}

HINT

Source

我真的是弱到家了,根本想错了方向。。。

首先假设没有初值的限制,那么一个初值的方案数为m^(k-1)。。。

但是因为有n的限制所以初值不能任选,我们设移动的差分数组为a;

那么对于每种不同的差分数组有n-∑a[i]种方案,因为[1,n-∑a[i]]都可以作为初值。。。

那么我们枚举这一个差分数组,然后计算答案,那么答案是:

∑∑∑∑...(n-a[1]-a[2]-...a[k-1]);

每个∑有m个值,有k-1个∑,所以差分数组的总数为m^(k-1),把n提出来,则有n*m^(k-1)。。。

那么后面要减去∑∑∑∑...(a[1]+a[2]+...a[k-1]);

有m^(k-1)个不同的差分数组,每个差分数组有k-1个数,那么总共有(k-1)*m^(k-1)个数,然后[1,m]每个数出现的次数相同,

那么[1,m]的每个数都会出现m^(k-1)/m=m^(k-2)次,然后sum[1,m]=(1+m)*m/2,那么后面的一堆∑的值为:

(1+m)*m/2*(k-1)*m^(k-2)。。。

真的是头猪啊,智障。。。

// MADE BY QT666
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=100050;
ll n,k,m,Mod;
ll qpow(ll x,ll y){ll ret=1;x%=Mod,y%=Mod;while(y){if(y&1) (ret*=x)%=Mod;(x*=x)%=Mod,y>>=1;}return ret;}
ll Mul(ll x,ll y){ll ret=0;x%=Mod,y%=Mod;while(y){if(y&1) (ret+=x)%=Mod;(x+=x)%=Mod;y>>=1;}return ret;}
int main(){
freopen("seq.in","r",stdin);
freopen("seq.out","w",stdout);
scanf("%lld%lld%lld%lld",&n,&k,&m,&Mod);
ll ans=Mul(n%Mod,qpow(m,k-1)%Mod)-Mul(Mul((1+m)*m/2%Mod,qpow(m,k-2)),k-1);
while(ans<0) ans+=Mod;printf("%lld\n",ans);
return 0;
}

  

bzoj 3142: [Hnoi2013]数列的更多相关文章

  1. 3142:[HNOI2013]数列 - BZOJ

    题目描述 Description 小T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨. 股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察到:除第一天外每天 ...

  2. 【BZOJ】3142: [Hnoi2013]数列

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3142 12年也有一个组合数学...(这几年的画风啊.... 考虑直接去做:DP? DP+容 ...

  3. [BZOJ3142][HNOI2013]数列(组合数学)

    3142: [Hnoi2013]数列 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1721  Solved: 854[Submit][Status][ ...

  4. 【BZOJ3142】[HNOI2013]数列(组合计数)

    [BZOJ3142][HNOI2013]数列(组合计数) 题面 BZOJ 洛谷 题解 唯一考虑的就是把一段值给分配给\(k-1\)天,假设这\(k-1\)天分配好了,第\(i\)天是\(a_i\),假 ...

  5. 【BZOJ3142】[HNOI2013]数列

    [BZOJ3142][HNOI2013]数列 题面 洛谷 bzoj 题解 设第\(i\)天的股价为\(a_i\),记差分数组\(c_i=a_{i+1}-a_i\) 则 \[ Ans=\sum_{c_1 ...

  6. [洛谷P3228] [HNOI2013]数列

    洛谷题目链接:[HNOI2013]数列 题目描述 小T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察到: ...

  7. BZOJ 3142 数列(组合)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=3142 题意:给出n,K,m,p.求有多少长度为K的序列A,满足:(1)首项为正整数:(2 ...

  8. bzoj千题计划293:bzoj3142: [Hnoi2013]数列

    http://www.lydsy.com/JudgeOnline/problem.php?id=3142 如果已知数列的差分数列a[1]~a[k-1] 那么这种差分方式对答案的贡献为 N-Σ a[i] ...

  9. BZOJ 3144: [Hnoi2013]切糕

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1495  Solved: 819[Submit][Status] ...

随机推荐

  1. git使用(上)-----基本的方法

    git应该是一项必须要掌握的工具.先简述它和SVN的区别 SVN是集中式版本控制系统,版本库是集中放在中央服务器的,而干活的时候,用的都是自己的电脑,所以首先要从中央服务器哪里得到最新的版本,然后干活 ...

  2. AFNetworking提示3840 Unescaped control character around character XXX

    处理办法:找到AFNetworking包中AFURLResponseSerialization.m文件在第250行修改代码如下: if (data.length > 0 && ! ...

  3. centos7 无法启动网络(service network restart)错误解决办法

    centos7 无法启动网络(service network restart)错误解决办法: (以下方法均为网上COPY,同时感谢原博主分享) systemctl status network.ser ...

  4. spring mvc 复杂参数注入

    过了这么久,又重新把博客拾起来了 来上海工作也已经有将近两周的时间了, 今天在整理项目的时候,遇到了一个关于参数注入的问题 背景: 我的开发前台用的是extjs4,在对后台spring mvc提交表单 ...

  5. django1.11如何实时访问mysql数据库

    前几天,一直在研究django框架,发现它自身封装了很多有用的API,很有意思.比如,数据库操作基本的创表,查询,插值,更新,删除都有,很方便,再加上json库可以直接将数据json化,通过服务器传给 ...

  6. 实现快餐配送页面jq

    <!DOCTYPE html><html> <head> <meta charset="utf-8"> <title>快 ...

  7. php中trait

    1.简介 自 PHP 5.4.0 起,PHP 实现了一种代码复用的方法,称为 trait. Trait 是为类似 PHP 的单继承语言而准备的一种代码复用机制.Trait 为了减少单继承语言的限制,使 ...

  8. 17. ZooKeeper常见的分布式系统任务——屏障

    以后几节中主要介绍以下内容: 如何执行领导者选举,组员管理和两阶段提交协议等常见的分布式系统任务 如何实现一些分布式数据结构,如屏障(barrier),锁(lock)和队列(queue) 这一章中概述 ...

  9. Python笔记·第六章——字典 (dict) 的增删改查及其他方法

    字典是python中唯一的映射类型,采用键值对(key-value)的形式存储数据.python对key进行哈希函数运算,根据计算的结果决定value的存储地址,所以字典是无序存储的,且key必须是可 ...

  10. java poi 导入日期为空

    如上两图,如果是第一种的话,可以导入,,但,如果是第二种的话,导入为空查看,导入的文件,有这么一条 debugger发现 它把2017-11-01转为Double,转不了,出错了,所以,我在catch ...