转载请标明出处http://www.cnblogs.com/haozhengfei/p/82c3ef86303321055eb10f7e100eb84b.html


PIC算法   幂迭代聚类

     PIC算法全称Power iteration clustering 幂迭代聚类

1.谱聚类

   幂迭代聚类的前身--谱聚类,基于图论的计算方法。(可以用点来表示对象,对象之间的关系用连线表示,Neo4j 图数据库用来做用户与用户之间的关系,它可以存两个对象之间的关系,它是半开源的单机版免费,集群版收费,它的规模不是很大,也就是几千万级别,如果数据量很大,也可以用Spark中的图计算Graphx)

2.谱聚类分割方法

相似度与权重:
   将每条数据当做图中的每个点,数据与数据之间的相似度为点和点的边的权重
谱聚类的分割方法:
        最优分割的原则是使子图内部边的权重之和最大,子图之间的边的权重之和最小。
 
        距离越小,相似度越高,那么权重之和越大
        – Mcut(最小割集)
        – Ncut (规范割集)一般使用Ncut多一些,既考虑最小化cut边又划分平衡。避免出现很多个单点离散的图
 
谱聚类的实现方式和步骤_NCut规范格局(如果是Mcut采用倒数第二小的特征即为所求):
        1.构建相似度矩阵(相似度矩阵可用邻接矩阵表示),指定聚类个数K;
        2.利用相似度矩阵构建拉普拉斯矩阵L
        3.计算标准化之后的拉普拉斯矩阵LK个特征向量,并按照特征值升序排序
        4.对由K个特征向量组成的矩阵按照每行进行Kmeans聚类
        5.将聚类结果的各个簇分别打上标记,对应上原数据,输出结果
 
    补充:
        点与点之间关联的邻接矩阵 
        拉普拉斯矩阵 = 度矩阵 - 邻接矩阵  (度矩阵:无向图中的度指的是连接一个点的边有多少,有向图中有出入度的概念,出度和入度,可以用邻接矩阵中每一行相加求出 度矩阵)
 
        矩阵M * 向量L = 向量L,但是如果矩阵M * 向量L = 向量L * 数值a,那么L就是M的特征向量,a就是相应的特征值。(一个矩阵不一定会有特征向量,也可能有很多的特征向量。一个特征向量会有一个特征值,二者是成对出现的)
 
        矩阵的特征值和特征向量,矩阵中的每一行*一个特征向量相当于将矩阵中的一行映射到向量中指定的某一点,这种方式从某种角度上做到了降维。

3.PIC算法VS谱聚类

   PIC和谱聚类算法类似,都是通过将数据嵌入到由相似矩阵映射出来的低维子空间中,然后直接或者通过kmean算法得到聚类结果
 
   它们的不同点在于如何嵌入及产生低维子空间
       – 谱聚类是通过拉普拉斯矩阵产生的最小向量构造的
       – Pic利用数据规范化的相似度矩阵,采用截断的快速迭代法

4谱聚类code

train
PowerIterationClustering_new
 import org.apache.log4j.{Level, Logger}
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.mllib.clustering.PowerIterationClustering /**
* Created by hzf
*/
object PowerIterationClustering_new {
// E:\IDEA_Projects\mlib\data\pic\train\pic_data.txt E:\IDEA_Projects\mlib\data\pic\model 3 20 local
def main(args: Array[String]) {
Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)
if (args.length < 5) {
System.err.println("Usage: PIC <inputPath> <modelPath> <K> <iterations> <master> [<AppName>]")
System.exit(1)
}
val appName = if (args.length > 5) args(5) else "PIC"
val conf = new SparkConf().setAppName(appName).setMaster(args(4))
val sc = new SparkContext(conf)
val data: RDD[(Long, Long, Double)] = sc.textFile(args(0)).map(line => {
val parts = line.split(" ").map(_.toDouble)
(parts(0).toLong, parts(1).toLong, parts(2))
}) val pic = new PowerIterationClustering()
.setK(args(2).toInt)
.setMaxIterations(args(3).toInt)
val model = pic.run(data) model.assignments.foreach { a =>
println(s"${a.id} -> ${a.cluster}")
}
model.save(sc, args(1))
}
}
设置运行参数
  1. E:\IDEA_Projects\mlib\data\pic\train\pic_data.txt E:\IDEA_Projects\mlib\data\pic\model 320 local
 

MLlib--PIC算法的更多相关文章

  1. Spark MLlib回归算法------线性回归、逻辑回归、SVM和ALS

    Spark MLlib回归算法------线性回归.逻辑回归.SVM和ALS 1.线性回归: (1)模型的建立: 回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多 ...

  2. spark mllib k-means算法实现

    package iie.udps.example.spark.mllib; import java.util.regex.Pattern; import org.apache.spark.SparkC ...

  3. Spark MLlib回归算法LinearRegression

    算法说明 线性回归是利用称为线性回归方程的函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析方法,只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归,在实际情况中大多数都是多 ...

  4. Spark MLlib基本算法【相关性分析、卡方检验、总结器】

    一.相关性分析 1.简介 计算两个系列数据之间的相关性是统计中的常见操作.在spark.ml中提供了很多算法用来计算两两的相关性.目前支持的相关性算法是Pearson和Spearman.Correla ...

  5. Spark MLlib架构解析(含分类算法、回归算法、聚类算法和协同过滤)

    Spark MLlib架构解析 MLlib的底层基础解析 MLlib的算法库分析 分类算法 回归算法 聚类算法 协同过滤 MLlib的实用程序分析 从架构图可以看出MLlib主要包含三个部分: 底层基 ...

  6. Spark2.0机器学习系列之11: 聚类(幂迭代聚类, power iteration clustering, PIC)

    在Spark2.0版本中(不是基于RDD API的MLlib),共有四种聚类方法:             (1)K-means             (2)Latent Dirichlet all ...

  7. 转载:Databricks孟祥瑞:ALS 在 Spark MLlib 中的实现

    Databricks孟祥瑞:ALS 在 Spark MLlib 中的实现 发表于2015-05-07 21:58| 10255次阅读| 来源<程序员>电子刊| 9 条评论| 作者孟祥瑞 大 ...

  8. Spark入门实战系列--8.Spark MLlib(上)--机器学习及SparkMLlib简介

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学 ...

  9. 使用 Spark MLlib 做 K-means 聚类分析[转]

    原文地址:https://www.ibm.com/developerworks/cn/opensource/os-cn-spark-practice4/ 引言 提起机器学习 (Machine Lear ...

随机推荐

  1. 自动化测试辅助工具(Selenium IDE等)

    本随表目录 Selenium IDE安装和使用 FireBug安装和使用 FirePath安装和使用   Selenium IDE安装 方式一:打开Firefox-->添加组件-->搜索出 ...

  2. Javascript高级程序设计笔记 <第五章> 引用类型

    一.object类型 创建object实例的方式有两种: //第一种使用new操作符跟构造函数 var person= new Object(); person.name="小王" ...

  3. 一起学Linux04之Linux文件基本属性

    Linux系统是一种典型的多用户系统,不同的用户处于不同的地位,拥有不同的权限.为了保护系统的安全性,Linux系统对不同的用户访问同一文件(包括目录文件)的权限做了不同的规定. 为了介绍文件属性,首 ...

  4. PHP重要知识点

    1 获取文件名或目录路径 getcwd() :显示是 在哪个文件里调用此文件 的目录 __DIR__ :当前内容写在哪个文件就显示这个文件目录 __FILE__ : 当前内容写在哪个文件就显示这个文件 ...

  5. 正则表达过滤表单隐藏元素,组装post数据

    <form name="form1" action="'.$serverUrl.'" method="post" > <i ...

  6. S2 深入.NET和C#编程 三:使用集合组织相关数据

    三:使用集合组织相关数据 集合概念: ArrayList:非常类似于数组,也有人称他为数组的列表.ArrayList可以动态维护,数组的容量是固定的 和数组类似,ArrayList中存储的是数据成为元 ...

  7. Java笔记:开发环境

    Java开发环境 Java是由Sun Microsystems公司于1995年5月推出的Java面向对象程序设计语言和Java平台的总称.由James Gosling和同事们共同研发,并在1995年正 ...

  8. Linux下查找文件的方法

    在Linux环境下查找一个文件的方法:find 路径 -name 'filename',filename不清楚全名的话可以用*号进行匹配,如“tomcat.*”.如果不清楚路径的话可以用"/ ...

  9. 安卓电量优化之AlarmManager使用全部解析

    版权声明:本文出自汪磊的博客,转载请务必注明出处. 一.AlarmManager概述 AlarmManager是安卓系统中一种系统级别的提示服务,可以在我们设定时间或者周期性的执行一个intent,这 ...

  10. File System 之本地文件系统

    上一篇文章提到了,最近做一个基于 File System/IndexedDB的应用,上一篇是定额和使用的查询. 因为LocalFileSystem只有chrome支持,有点尴尬,如果按需加载又何来尴尬 ...