Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 13266   Accepted: 5123   Special Judge

Description

Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have access to the whole network,
each hub must be accessible by cables from any other hub (with possibly some intermediate hubs). 

Since cables of different types are available and shorter ones are cheaper, it is necessary to make such a plan of hub connection, that the maximum length of a single cable is minimal. There is another problem — not each hub can be connected to any other one
because of compatibility problems and building geometry limitations. Of course, Andrew will provide you all necessary information about possible hub connections. 

You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied. 

Input

The first line of the input contains two integer numbers: N - the number of hubs in the network (2 <= N <= 1000) and M - the number of possible hub connections (1 <= M <= 15000). All hubs are numbered from 1 to N. The following M lines contain information about
possible connections - the numbers of two hubs, which can be connected and the cable length required to connect them. Length is a positive integer number that does not exceed 106. There will be no more than one way to connect two hubs. A hub cannot
be connected to itself. There will always be at least one way to connect all hubs.

Output

Output first the maximum length of a single cable in your hub connection plan (the value you should minimize). Then output your plan: first output P - the number of cables used, then output P pairs of integer numbers - numbers of hubs connected by the corresponding
cable. Separate numbers by spaces and/or line breaks.

Sample Input

4 6
1 2 1
1 3 1
1 4 2
2 3 1
3 4 1
2 4 1

Sample Output

1
4
1 2
1 3
2 3
3 4

这题我就不吐槽了。

例子都是错的。。我没看讨论区。。

一直不知道。

浪费我那么多时间调试。

我去。

各种吐血。

。我也逗比。。

例子明显的出现环。。

正确的例子应该是:

1

3

1 2

1 3

3 4

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<cmath> using namespace std; const int maxn1 = 15050;//边数的最大值
const int maxn2 = 1050;//顶点个数的最大值
int f[maxn2];//f[i]为顶点i在集合对树中的根节点
int s[maxn1];//记录选择的边的序号
int n, m;//集线器的个数。 边的个数
int cnt;//选择的边的数目
int ans;//记录最大的长度 struct Edge
{
int u;
int v;
int len;
};
Edge edge[maxn1];//边的数组 bool cmp(Edge a, Edge b)//按长度从小到大的排序
{
return a.len<b.len;
} void init()//初始化
{
for(int i=0; i<=n; i++)
f[i] = i;
} int find(int x)//并查集的find函数
{
return f[x] == x? x:f[x]=find( f[x] );
} void kruskal()
{
int x, y;
cnt = 0;
for(int i=1; i<=m; i++)
{
x = find( edge[i].u );
y = find( edge[i].v );
if( x==y ) continue;
f[y] = x;
ans = edge[i].len;
cnt++;
s[cnt] = i;
if( cnt>=n-1 ) break;
}
} void output()//输出函数
{
printf("%d\n", ans);
printf("%d\n", cnt);
for(int i=1; i<=cnt; i++)
printf("%d %d\n", edge[ s[i] ].u, edge[ s[i] ].v);
} int main()
{
while(scanf("%d%d", &n, &m)!=EOF)
{
init();
for(int i=1; i<=m; i++)
scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].len);
sort( edge+1, edge+m+1, cmp );
kruskal();
output();
} return 0;
}

POJ 1861:Network(最小生成树&amp;&amp;kruskal)的更多相关文章

  1. ZOJ 1542 POJ 1861 Network 网络 最小生成树,求最长边,Kruskal算法

    题目连接:problemId=542" target="_blank">ZOJ 1542 POJ 1861 Network 网络 Network Time Limi ...

  2. POJ 1861 Network (Kruskal算法+输出的最小生成树里最长的边==最后加入生成树的边权 *【模板】)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14021   Accepted: 5484   Specia ...

  3. POJ 1861 Network (Kruskal求MST模板题)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14103   Accepted: 5528   Specia ...

  4. POJ 1861 Network (模版kruskal算法)

    Network Time Limit: 1000MS Memory Limit: 30000K Total Submissions: Accepted: Special Judge Descripti ...

  5. POJ 1861 Network

    题意:有n个点,部分点之间可以连接无向边,每条可以连接的边都有一个权值.求一种连接方法将这些点连接成一个连通图,且所有连接了的边中权值最大的边权值最小. 解法:水题,直接用Kruskal算法做一遍就行 ...

  6. POJ 1861 ——Network——————【最小瓶颈生成树】

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 15268   Accepted: 5987   Specia ...

  7. POJ 1861 Network (MST)

    题意:求解最小生成树,以及最小瓶颈生成树上的瓶颈边. 思路:只是求最小生成树即可.瓶颈边就是生成树上权值最大的那条边. //#include <bits/stdc++.h> #includ ...

  8. POJ 1236 Network of Schools(强连通 Tarjan+缩点)

    POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意:  给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得 ...

  9. POJ 1236 Network of Schools(强连通分量)

    POJ 1236 Network of Schools 题目链接 题意:题意本质上就是,给定一个有向图,问两个问题 1.从哪几个顶点出发,能走全全部点 2.最少连几条边,使得图强连通 思路: #inc ...

  10. poj 3417 Network(tarjan lca)

    poj 3417 Network(tarjan lca) 先给出一棵无根树,然后下面再给出m条边,把这m条边连上,然后每次你能毁掉两条边,规定一条是树边,一条是新边,问有多少种方案能使树断裂. 我们设 ...

随机推荐

  1. PHP面向对象摘要

    一.面向对象的三种特性,分别是封装性,继承性和多态性. 1.封装性:封装是面向对象的核心思想,将对象的属性和行为封装起来,不需要让外界知道具体的实现细节,这就是封装思想. 2.继承性:继承性主要是描述 ...

  2. 从成本角度看Java微服务

    近年来,微服务因其良好的灵活性和伸缩性等特点备受追捧,很多公司开始采用微服务架构或将已有的单体系统改造成微服务.IBM也于近日开源了轻量级Java微服务应用服务器 Open Liberty .但是采用 ...

  3. 微信小程序语音识别服务搭建全过程解析(https api开放,支持新接口mp3录音、老接口silk录音)

    silk v3(或新录音接口mp3)录音转olami语音识别和语义处理的api服务(ubuntu16.04服务器上实现) 重要的写在前面 重要事项一: 所有相关更新,我优先更新到我个人博客中,其它地方 ...

  4. Oracle-1 - :超级适合初学者的入门级笔记,CRUD,事务,约束 ......

    Oracle 更改时间: 2017-10-25  -  21:33:49 2017-10-26  -  11:43:19 2017-10-27  -  19:06:57 2017-10-28  -  ...

  5. layui数据表格以及传数据方式

    数据表格一: <div style="margin:0px; background-color: white; margin:0 10px;"> <blockqu ...

  6. 强大又简单的响应式框架——Foundation 网格系统

          前端框架——Foundation     简介 Foundation 用于开发响应式的 HTML, CSS and JavaScript 框架. Foundation 是一个易用.强大而且 ...

  7. Cordova使用build命令出错: Could not create the Java Virtual Machine.

    这是因为虚拟机内存不足导致的,解决方案如下: _JAVA_OPTIONS=-Xmx512M

  8. 【Arduino】使用LCD1602和DHT11制作温湿度显示器

    材料: 1.DHT11 2.LCD1602 3.LCD1602 转接板 4.Arduino UNO 5.Arduino 传感器扩展版 那个Arduino UNO 我当初挑类个便宜的山寨货买,结果发来和 ...

  9. 让C++控制台程序停下来,实现暂停功能

    一.针对Microsoft #include   <stdlib.h> (1)第一种方式system( "PAUSE "); --------------------  ...

  10. Thrift全面介绍

    官网:http://thrift.apache.org   简介 Thrift是一个软件框架,用来进行可扩展且跨语言的服务的开发.它结合了功能强大的软件堆栈和代码生成引擎,以构建在 C++, Java ...