因为最近在研究生成对抗网络GAN,在读别人的代码时发现了 with tf.variable_scope(self.name_scope_conv, reuse = reuse): 这样一条语句,查阅官方文档时明白了这是TensorFlow的变量共享机制。

举个例子:当我们研究生成对抗网络GAN的时候,判别器的任务是,如果接收到的是生成器生成的图像,判别器就尝试优化自己的网络结构来使自己输出0,如果接收到的是来自真实数据的图像,那么就尝试优化自己的网络结构来使自己输出1。也就是说,生成图像和真实图像经过判别器的时候,要共享同一套变量,所以TensorFlow引入了变量共享机制。

变量共享主要涉及到两个函数:  tf.get_variable(<name>, <shape>, <initializer>)  和  tf.variable_scope(<scope_name>)  。

1. tf.get_variable(<name>, <shape>, <initializer>)

例如,我们搭建一个卷积层:

def conv_relu(input, kernel_shape, bias_shape):
    # Create variable named "weights".
    weights = tf.get_variable("weights", kernel_shape,
        initializer=tf.random_normal_initializer())
    # Create variable named "biases".
    biases = tf.get_variable("biases", bias_shape,
        initializer=tf.constant_initializer(0.0))
    conv = tf.nn.conv2d(input, weights,
        strides=[1, 1, 1, 1], padding='SAME')
    return tf.nn.relu(conv + biases)

然后,我们调用两次:

input1 = tf.random_normal([1,10,10,32])
input2 = tf.random_normal([1,20,20,32])
x = conv_relu(input1, kernel_shape=[5, 5, 1, 32], bias_shape=[32])
x = conv_relu(x, kernel_shape=[5, 5, 32, 32], bias_shape = [32])  # This fails.

会发现报错信息。因为执行的命令不明确:第二次调用时是创建一套新的变量(weights,biases)还是再次使用已存在的那一套变量(第一次调用时生成的weights和biases)呢?

这时就需要用到第二个函数: tf.variable_scope(<scope_name>)

2. tf.variable_scope(<scope_name>)

请看例子:

def my_image_filter(input_images):
    with tf.variable_scope("conv1"):
        # Variables created here will be named "conv1/weights", "conv1/biases".
        relu1 = conv_relu(input_images, [5, 5, 1, 32], [32])
    with tf.variable_scope("conv2"):
        # Variables created here will be named "conv2/weights", "conv2/biases".
        return conv_relu(relu1, [5, 5, 32, 32], [32])

在不同的域内会生成不同的变量。

如果想要变量共享,TensorFlow提供了两种方法:

1. 设置  reuse=True

with tf.variable_scope("model"):
  output1 = my_image_filter(input1)
with tf.variable_scope("model", reuse=True):
  output2 = my_image_filter(input2)

2. 调用 scope.reuse_variables()

with tf.variable_scope("model") as scope:
  output1 = my_image_filter(input1)
  scope.reuse_variables()
  output2 = my_image_filter(input2)

注:在官方文档的最后有这样一段话:Since depending on exact string names of scopes can feel dangerous, it's also possible to initialize a variable scope based on another one:

with tf.variable_scope("model") as scope:
  output1 = my_image_filter(input1)
with tf.variable_scope(scope, reuse=True):
  output2 = my_image_filter(input2)

TensorFlow学习笔记3——变量共享的更多相关文章

  1. TensorFlow学习笔记4——变量共享

    因为最近在研究生成对抗网络GAN,在读别人的代码时发现了 with tf.variable_scope(self.name_scope_conv, reuse = reuse): 这样一条语句,查阅官 ...

  2. tensorflow学习笔记二----------变量

    tensorflow里面的变量表示,需要使用特定的语法进行.如果想构造一个行(列)向量,需要调用Variable函数进行.对两个变量进行操作,也要调用相应的函数. import tensorflow ...

  3. tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)

    tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...

  4. tensorflow学习笔记——自编码器及多层感知器

    1,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这 ...

  5. TensorFlow学习笔记(一)

    [TensorFlow API](https://www.tensorflow.org/versions/r0.12/how_tos/variable_scope/index.html) Tensor ...

  6. Tensorflow学习笔记2019.01.22

    tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱 ...

  7. 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别

    深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...

  8. tensorflow学习笔记(1)-基本语法和前向传播

    tensorflow学习笔记(1) (1)tf中的图 图中就是一个计算图,一个计算过程.                                       图中的constant是个常量 计 ...

  9. TensorFlow学习笔记——LeNet-5(训练自己的数据集)

    在之前的TensorFlow学习笔记——图像识别与卷积神经网络(链接:请点击我)中了解了一下经典的卷积神经网络模型LeNet模型.那其实之前学习了别人的代码实现了LeNet网络对MNIST数据集的训练 ...

随机推荐

  1. Express 学习笔记纯干货(Routing、Middleware、托管静态文件、view engine 等等)

    原始文章链接:http://www.lovebxm.com/2017/07/14/express-primer/ 1. Express 简介 Express 是基于 Node.js 平台,快速.开放. ...

  2. windows调试工具列表

    摘自windbg帮助文档(windbg中输入.hh): Debugging Tools for Windows (安装WinDbg后这些工具都会安装在目录C:\Program Files (x86)\ ...

  3. MyBatis的关联关系补充 多对多 继承

    多对多 一个学生有多个课程 一个课程有多个学生 思路分析 :使用一个中间表 用学生表和课程表的主键作为中间表的联合主键 1数据库表的设计 课程表 学生表 中间表 2/实体类的设计 课程类 public ...

  4. Linux最小化安装

    1,linux安装网络自动配置: 2,linux硬盘分配 1,/boot 用来存放与 Linux 系统启动有关的程序,比如启动引导装载程序等,建议大小为 100-200MB . 2,swap 实现虚拟 ...

  5. docker~Dockerfile优化程序的部署

    回到目录 一些理论 我们都知道docker这个容器工具可以帮助我们快速进行环境的部署,这对于运营人员来说,无疑是个福音,而这个工作大叔认为不应该是运营人员干的,而是由开发人员来做,因为只有你知道你干的 ...

  6. node.js存json数据到mysql

    众所周知,mysql是无法存储json数据的,这个刚开始笔者也是知道的,也知道JSON.stringify()这个API的,但是当我真正要这样做利用JSON.stringify()讲要转换的JSON数 ...

  7. jrebel的安装配置

    1,在线安装jrebel[也可以离线,不过在线可以直接支持maven] 2,然后按照如下步骤 http://idea.goxz.gq/ilanyu 242367666@qq.com 随意邮箱    然 ...

  8. mysql内部级联删除

    1,创建user表 属性:id,name 2,创建userInfo表 属性:id,age 在userInfo表中创建外键id,如下图: 在user表中插入两个用户信息 (1,'1'),(2,'2') ...

  9. Filter ,Interceptor,AOP

    一.Filter: Filter也称之为过滤器,它是Servlet技术中比较激动人心的技术,WEB开发人员通过Filter技术,对web服务器管理的所有web资源:例如Jsp, Servlet, 静态 ...

  10. pygal的简单使用

    pygal的简单使用 例子来自此书: <Python编程从入门到实战>[美]Eric Matthes pygal是一个SVG图表库.SVG是一种矢量图格式.全称Scalable Vecto ...