因为最近在研究生成对抗网络GAN,在读别人的代码时发现了 with tf.variable_scope(self.name_scope_conv, reuse = reuse): 这样一条语句,查阅官方文档时明白了这是TensorFlow的变量共享机制。

举个例子:当我们研究生成对抗网络GAN的时候,判别器的任务是,如果接收到的是生成器生成的图像,判别器就尝试优化自己的网络结构来使自己输出0,如果接收到的是来自真实数据的图像,那么就尝试优化自己的网络结构来使自己输出1。也就是说,生成图像和真实图像经过判别器的时候,要共享同一套变量,所以TensorFlow引入了变量共享机制。

变量共享主要涉及到两个函数:  tf.get_variable(<name>, <shape>, <initializer>)  和  tf.variable_scope(<scope_name>)  。

1. tf.get_variable(<name>, <shape>, <initializer>)

例如,我们搭建一个卷积层:

def conv_relu(input, kernel_shape, bias_shape):
    # Create variable named "weights".
    weights = tf.get_variable("weights", kernel_shape,
        initializer=tf.random_normal_initializer())
    # Create variable named "biases".
    biases = tf.get_variable("biases", bias_shape,
        initializer=tf.constant_initializer(0.0))
    conv = tf.nn.conv2d(input, weights,
        strides=[1, 1, 1, 1], padding='SAME')
    return tf.nn.relu(conv + biases)

然后,我们调用两次:

input1 = tf.random_normal([1,10,10,32])
input2 = tf.random_normal([1,20,20,32])
x = conv_relu(input1, kernel_shape=[5, 5, 1, 32], bias_shape=[32])
x = conv_relu(x, kernel_shape=[5, 5, 32, 32], bias_shape = [32])  # This fails.

会发现报错信息。因为执行的命令不明确:第二次调用时是创建一套新的变量(weights,biases)还是再次使用已存在的那一套变量(第一次调用时生成的weights和biases)呢?

这时就需要用到第二个函数: tf.variable_scope(<scope_name>)

2. tf.variable_scope(<scope_name>)

请看例子:

def my_image_filter(input_images):
    with tf.variable_scope("conv1"):
        # Variables created here will be named "conv1/weights", "conv1/biases".
        relu1 = conv_relu(input_images, [5, 5, 1, 32], [32])
    with tf.variable_scope("conv2"):
        # Variables created here will be named "conv2/weights", "conv2/biases".
        return conv_relu(relu1, [5, 5, 32, 32], [32])

在不同的域内会生成不同的变量。

如果想要变量共享,TensorFlow提供了两种方法:

1. 设置  reuse=True

with tf.variable_scope("model"):
  output1 = my_image_filter(input1)
with tf.variable_scope("model", reuse=True):
  output2 = my_image_filter(input2)

2. 调用 scope.reuse_variables()

with tf.variable_scope("model") as scope:
  output1 = my_image_filter(input1)
  scope.reuse_variables()
  output2 = my_image_filter(input2)

注:在官方文档的最后有这样一段话:Since depending on exact string names of scopes can feel dangerous, it's also possible to initialize a variable scope based on another one:

with tf.variable_scope("model") as scope:
  output1 = my_image_filter(input1)
with tf.variable_scope(scope, reuse=True):
  output2 = my_image_filter(input2)

TensorFlow学习笔记3——变量共享的更多相关文章

  1. TensorFlow学习笔记4——变量共享

    因为最近在研究生成对抗网络GAN,在读别人的代码时发现了 with tf.variable_scope(self.name_scope_conv, reuse = reuse): 这样一条语句,查阅官 ...

  2. tensorflow学习笔记二----------变量

    tensorflow里面的变量表示,需要使用特定的语法进行.如果想构造一个行(列)向量,需要调用Variable函数进行.对两个变量进行操作,也要调用相应的函数. import tensorflow ...

  3. tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)

    tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...

  4. tensorflow学习笔记——自编码器及多层感知器

    1,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这 ...

  5. TensorFlow学习笔记(一)

    [TensorFlow API](https://www.tensorflow.org/versions/r0.12/how_tos/variable_scope/index.html) Tensor ...

  6. Tensorflow学习笔记2019.01.22

    tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱 ...

  7. 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别

    深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...

  8. tensorflow学习笔记(1)-基本语法和前向传播

    tensorflow学习笔记(1) (1)tf中的图 图中就是一个计算图,一个计算过程.                                       图中的constant是个常量 计 ...

  9. TensorFlow学习笔记——LeNet-5(训练自己的数据集)

    在之前的TensorFlow学习笔记——图像识别与卷积神经网络(链接:请点击我)中了解了一下经典的卷积神经网络模型LeNet模型.那其实之前学习了别人的代码实现了LeNet网络对MNIST数据集的训练 ...

随机推荐

  1. .NET C#到Java没那么难,DB篇

    前言 .NET C#到Java没那么难,都是面向对象的语言,而且语法还是相似的,先对比一下开发环境,再到Servlet,再到MVC,都是一样一样的,只是JAVA的配制项比较多而已,只要配好一个,后面都 ...

  2. cookie的存取

    cookie的存取 /写cookies 一路径为标准,Path – 路径 function setCookie(name, value, time) { var strsec = getsec(tim ...

  3. Spring 自定义注解,配置简单日志注解

    java在jdk1.5中引入了注解,spring框架也正好把java注解发挥得淋漓尽致. 下面会讲解Spring中自定义注解的简单流程,其中会涉及到spring框架中的AOP(面向切面编程)相关概念. ...

  4. 学习笔记TF028:实现简单卷积网络

    载入MNIST数据集.创建默认Interactive Session. 初始化函数,权重制造随机噪声打破完全对称.截断正态分布噪声,标准差设0.1.ReLU,偏置加小正值(0.1),避免死亡节点(de ...

  5. LInux挂载windows共享磁盘

    #!/bin/sh #进行windows paths目录同步 cd /mnt str="//10.33.4.199/linux" result=$(df | grep ${str} ...

  6. Jmeter之处理session、cookie以及如何做关联

    具体描述问题之前,我们先了解下session.cookie session.cookie的概念 1.session是放在服务器上的,过期与否取决于服务期的设定,cookie是存在客户端的,过去与否可以 ...

  7. Hibernate一对多实例

    本文向大家介绍Hibernate实例一对多的情况,可能好多人还不了解Hibernate实例一对多,没有关系,下面通过一个实例来帮助您理解Hibernate实例一对多,希望本文能教会你更多东西. 先看由 ...

  8. (转)eclipse导入Gradle项目

    场景:最近在学习spring实战(第4版),下载完源码后发现不是maven工程,使用Gradle构建. 1准备工作 1.1 安装插件 打开eclipse,Help——Marketplace,搜索bui ...

  9. 设计模式的征途—16.访问者(Visitor)模式

    在患者就医时,医生会根据病情开具处方单,很多医院都会存在以下这个流程:划价人员拿到处方单之后根据药品名称和数量计算总价,而药房工作人员根据药品名称和数量准备药品,如下图所示. 在软件开发中,有时候也需 ...

  10. nodeJS之URL

    前面的话 在HTTP部分,详细介绍了URL的相关知识.而nodejs中的url模块提供了一些实用函数,用于URL处理与解析.本文将详细介绍nodeJS中的URL URL对象 解析 URL 对象有以下内 ...