Baozi Leetcode solution 1036: Escape a Large Maze
Problem Statement
In a 1 million by 1 million grid, the coordinates of each grid square are (x, y) with 0 <= x, y < 10^6.
We start at the source square and want to reach the target square. Each move, we can walk to a 4-directionally adjacent square in the grid that isn't in the given list of blocked squares.
Return true if and only if it is possible to reach the target square through a sequence of moves.
Example 1:
Input: blocked = [[0,1],[1,0]], source = [0,0], target = [0,2]
Output: false
Explanation:
The target square is inaccessible starting from the source square, because we can't walk outside the grid.
Example 2:
Input: blocked = [], source = [0,0], target = [999999,999999]
Output: true
Explanation:
Because there are no blocked cells, it's possible to reach the target square.
Note:
0 <= blocked.length <= 200blocked[i].length == 20 <= blocked[i][j] < 10^6source.length == target.length == 20 <= source[i][j], target[i][j] < 10^6source != target
Hints
- If we become stuck, there's either a loop around the source or around the target.
- If there is a loop around say, the source, what is the maximum number of squares it can have?
Problem link
Video Tutorial
You can find the detailed Youtube video tutorial here
国内:B站的视频戳这里
Thought Process
At first, I am puzzled why this problem would be a hard one. It seems simply applying a BFS would get the answer. So here we go.
Brute force, simple BFS
Of course it will hit memory limit because I am allocating a 2-dimensional visited array. Assume boolean is 8 bit -> 1B, 1 Million * 1 Million = 1TB, OMG, immediately using a set instead.
P.S. fun fact, you can use this method to test how much memory leetcode allocate to this problem, you can use binary search and memory is around 300MB
However, this would start hitting Time Limit Exception. Now I begin to notice a few constrains, e.g., the block size is only 200 while the grid is 1M*1M. Simply going from source to target worst case would cause a timeout.
Next thought would be does it help if we sort the block array? While we are doing the BFS, if the block is already larger/smaller than the max/min of the block, we can early stop. However, this won't help if we simply place a block near the target. Also, this would be a nightmare to implement.
Check block loops on source and target
Following the two hints, it would be natural to come up with this idea. Given such huge contrast between the block size (0,200) and the grid size (1M, 1M), all we need to do is to check if there is any loops built by block on source and target b/c if there is a loop, we cannot explore outside of the loop. However, notice if target and source are in the same loop, then we are fine.
There are two ways to early stop this loop checking. One way is to count the BFS steps, the other way is to follow the hints, given 200 blocks, what's the max area it can cover. Given the length 200, Fig 2 in the below graph can result in the largest area. Therefore, we can early terminate the BFS search once we covered more than 19900 blocks. (We can relax this a bit to 20000, doesn't matter)
- Fig 1 area = 100 * 100 = 10000
- Fig 2 area = 1 + 2 + 3 + ... + 199 = (1+199)*199/2 = 19900
- Fig 3 area = 1 * 200 = 200
- Fig 4 area = 790 (2*Pi*R = 100, thus R = 15.92, Pi * R^2 = 790 )

Solutions
Brute force, simple BFS
private final int[] xDirection = {1, 0, -1, 0};
private final int[] yDirection = {0, -1, 0, 1};
private final int ONE_MILLION = 1000000;
public boolean isEscapePossible(int[][] blocked, int[] source, int[] target) {
if (blocked == null || source == null || target == null) {
return false;
}
Set<String> blockLookup = this.indexBlockedMatrixToSet(blocked);
int m = ONE_MILLION;
int n = ONE_MILLION;
Set<String> visited = new HashSet<>();
Queue<String> queue = new LinkedList<>();
String sourceString = source[0] + "," + source[1];
queue.offer(sourceString);
visited.add(sourceString);
while (!queue.isEmpty()) {
String[] curBlock = queue.poll().split(",");
int curX = Integer.parseInt(curBlock[0]);
int curY = Integer.parseInt(curBlock[1]);
if (curX == target[0] && curY == target[1]) {
return true;
}
for (int i = 0; i < 4; i++) {
int nextX = curX + xDirection[i];
int nextY = curY + yDirection[i];
if (this.shouldExplore(nextX, nextY, ONE_MILLION, ONE_MILLION, blockLookup, visited)) {
String nextKey = nextX + "," + nextY;
visited.add(nextKey);
queue.offer(nextKey);
}
}
}
return false;
}
private boolean shouldExplore(
int x,
int y,
int row,
int col,
Set<String> blockLookup,
Set<String> visited) {
if (!(x >= 0 && x < row && y >=0 && y < col)) {
return false;
}
String index = x + "," + y;
if (visited.contains(index)) {
return false;
}
if (blockLookup.contains(index)) {
return false;
}
return true;
}
private Set<String> indexBlockedMatrixToSet(int[][] blocked) {
Set<String> lookup = new HashSet<>();
for (int i = 0; i < blocked.length; i++) {
int x = blocked[i][0];
int y = blocked[i][1];
String index = x + "," + y;
lookup.add(index);
}
return lookup;
}
Time Complexity: O(N), N = 1M * 1M, essentially need to cover the entire huge grid
Space Complexity: O(N), N = 1M*1M, essentially all the nodes need to be put to visited set
Check block loops on source and target
private final int[] xDirection = {1, 0, -1, 0};
private final int[] yDirection = {0, -1, 0, 1};
private final int ONE_MILLION = 1000000;
private final int MAX_COUNT_THRESHOLD = 20000;
public boolean isEscapePossible(int[][] blocked, int[] source, int[] target) {
if (blocked == null || source == null || target == null) {
return false;
}
Set<String> blockLookup = this.indexBlockedMatrixToSet(blocked);
boolean isSourceLoop = this.isLoopAroundPoint(source, target, blockLookup);
if (isSourceLoop) {
return false;
}
boolean isTargetLoop = this.isLoopAroundPoint(target, source, blockLookup);
if (isTargetLoop) {
return false;
}
return true;
}
private boolean isLoopAroundPoint(int[] source, int[] target, Set<String> blockLookup) {
int count = 0;
Set<String> visited = new HashSet<>();
Queue<String> queue = new LinkedList<>();
String index = source[0] + "," + source[1];
queue.offer(index);
visited.add(index);
while (!queue.isEmpty()) {
String[] curBlock = queue.poll().split(",");
int curX = Integer.parseInt(curBlock[0]);
int curY = Integer.parseInt(curBlock[1]);
// here think about
if (count >= MAX_COUNT_THRESHOLD) {
return false;
}
if (curX == target[0] && curY == target[1]) {
return false;
}
for (int i = 0; i < 4; i++) {
int nextX = curX + xDirection[i];
int nextY = curY + yDirection[i];
if (this.shouldExplore(nextX, nextY, ONE_MILLION, ONE_MILLION, blockLookup, visited)) {
String nextKey = nextX + "," + nextY;
count++;
visited.add(nextKey);
queue.offer(nextKey);
}
}
}
return true;
}
private boolean shouldExplore(
int x,
int y,
int row,
int col,
Set<String> blockLookup,
Set<String> visited) {
if (!(x >= 0 && x < row && y >=0 && y < col)) {
return false;
}
String index = x + "," + y;
if (visited.contains(index)) {
return false;
}
if (blockLookup.contains(index)) {
return false;
}
return true;
}
private Set<String> indexBlockedMatrixToSet(int[][] blocked) {
Set<String> lookup = new HashSet<>();
for (int i = 0; i < blocked.length; i++) {
int x = blocked[i][0];
int y = blocked[i][1];
String index = x + "," + y;
lookup.add(index);
}
return lookup;
}
Time Complexity: O(N), N in terms of block size
Space Complexity: O(N), N in terms of block size
References
Baozi Leetcode solution 1036: Escape a Large Maze的更多相关文章
- [Swift]LeetCode1036.逃离大迷宫 | Escape a Large Maze
In a 1 million by 1 million grid, the coordinates of each grid square are (x, y) with 0 <= x, y & ...
- Baozi Leetcode Solution 205: Isomorphic Strings
Problem Statement Given two strings s and t, determine if they are isomorphic. Two strings are isomo ...
- Baozi Leetcode Solution 290: Word Pattern
Problem Statement Given a pattern and a string str, find if str follows the same pattern. Here follo ...
- leetcode solution cracked tutorial
leetcode solution cracked tutorial problemset https://leetcode.com/problemset/all/ Top Interview Que ...
- 【LeetCode】789. Escape The Ghosts 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...
- 【LeetCode】830. Positions of Large Groups 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...
- 73th LeetCode Weekly Contest Escape The Ghosts
You are playing a simplified Pacman game. You start at the point (0, 0), and your destination is(tar ...
- Leetcode solution 291: Word Pattern II
Problem Statement Given a pattern and a string str, find if str follows the same pattern. Here follo ...
- Leetcode solution 227: Basic Calculator II
Problem Statement Implement a basic calculator to evaluate a simple expression string. The expressio ...
随机推荐
- Delphi中TResourceStream流使用
Resource可以是任意文件(图像.声音.office都可以),直接打包到编译的exe文件中,调用也非常方便 打开一个新的或已有的delphi工程 1.先在 Project->resource ...
- delphi 实现微信开发(1) (使用kbmmw web server)
原文地址:delphi 实现微信开发(1)作者:红鱼儿 大体思路: 1.用户向服务号发消息,(这里可以是个菜单项,也可以是一个关键词,如:注册会员.) 2.kbmmw web server收到消息,生 ...
- LVS-DR模式部署流程
情景一 一.环境介绍 1)RIP.VIP.DIP为同一物理网络 2)LVS Hostname:lvs eth0:DIP-192.168.3.31 eth0:0:VIP-192.168.3.10 3)R ...
- SpringBoot(十九)_spring.profiles.active=@profiles.active@ 的使用
现在在的公司用spring.profiles.active=@profiles.active@ 当我看到这个的时候,一脸蒙蔽,这个@ 是啥意思. 这里其实是配合 maven profile进行选择不同 ...
- ABP之Setting
介绍 每个应用程序都需要存储一些设置,并在应用程序的某个地方使用这些设置.ABP提供了一个强大的基础设施来存储/检索在服务器端和客户端都可用的应用程序.租户和用户级别设置. 设置是通常存储在数据库(或 ...
- mysql数据库之表关系
外键 前戏之一对多关系 # 定义一张部门员工表id name gender dep_name dep_desc1 jason male 教学部 教书育人2 egon male 外交部 漂泊游荡3 ta ...
- 点菜网---Java开源生鲜电商平台-技术选型(源码可下载)
点菜网---Java开源生鲜电商平台-技术选型(源码可下载) 1.内容简介 点菜网目前选用的是最流行的微服务架构模式,采用前后端分离的开发模式,具备高可用,高负载,支持千万级别的数据量的请求. 2. ...
- Storm 学习之路(五)—— Storm编程模型详解
一.简介 下图为Strom的运行流程图,在开发Storm流处理程序时,我们需要采用内置或自定义实现spout(数据源)和bolt(处理单元),并通过TopologyBuilder将它们之间进行关联,形 ...
- wireshark数据包分析实战 第三、四章
1,wireshark支持的协议上千种,开源的. 2,wireshark需要winpcap驱动支持.winpcap驱动的作用通过操作系统捕捉原始数据包.应用过滤器.将网卡切换为混杂模式. 3,捕获文件 ...
- isinstance()函数判断数据类型
判断是否是字符串 a = b = " print(isinstance(a,str)) print(isinstance(b,str)) False True 判断是否是列表 a = [,, ...