现在的手游基本都是重复操作,一个动作要等好久,结束之后继续另一个动作.很麻烦,所以动起了自己写一个游戏辅助的心思.

这个辅助本身没什么难度,就是通过不断的截图,然后从这个截图中找出预先截好的能代表相应动作的按钮或者触发条件的小图.

找到之后获取该子区域的左上角坐标,然后通过windows API调用鼠标或者键盘做操作就行了.

这里面最难的也就是找图了,因为要精准找图,而且最好能适应不同的分辨率下找图,所以在模板匹配的基础上,就有了SIFT和SURF的特征点找图方式.

在写的过程中查找资料,大都是C++ 或者python的, 很少有原生的C#实现, 所以我就直接拿来翻译过来了(稍作改动).

SIFT算法

public static Bitmap MatchPicBySift(Bitmap imgSrc, Bitmap imgSub)
{
using (Mat matSrc = imgSrc.ToMat())
using (Mat matTo = imgSub.ToMat())
using (Mat matSrcRet = new Mat())
using (Mat matToRet = new Mat())
{
KeyPoint[] keyPointsSrc, keyPointsTo;
using (var sift = OpenCvSharp.XFeatures2D.SIFT.Create())
{
sift.DetectAndCompute(matSrc, null, out keyPointsSrc, matSrcRet);
sift.DetectAndCompute(matTo, null, out keyPointsTo, matToRet);
}
using (var bfMatcher = new OpenCvSharp.BFMatcher())
{
var matches = bfMatcher.KnnMatch(matSrcRet, matToRet, k: ); var pointsSrc = new List<Point2f>();
var pointsDst = new List<Point2f>();
var goodMatches = new List<DMatch>();
foreach (DMatch[] items in matches.Where(x => x.Length > ))
{
if (items[].Distance < 0.5 * items[].Distance)
{
pointsSrc.Add(keyPointsSrc[items[].QueryIdx].Pt);
pointsDst.Add(keyPointsTo[items[].TrainIdx].Pt);
goodMatches.Add(items[]);
Console.WriteLine($"{keyPointsSrc[items[0].QueryIdx].Pt.X}, {keyPointsSrc[items[0].QueryIdx].Pt.Y}");
}
} var outMat = new Mat(); // 算法RANSAC对匹配的结果做过滤
var pSrc = pointsSrc.ConvertAll(Point2fToPoint2d);
var pDst = pointsDst.ConvertAll(Point2fToPoint2d);
var outMask = new Mat();
// 如果原始的匹配结果为空, 则跳过过滤步骤
if (pSrc.Count > && pDst.Count > )
Cv2.FindHomography(pSrc, pDst, HomographyMethods.Ransac, mask: outMask);
// 如果通过RANSAC处理后的匹配点大于10个,才应用过滤. 否则使用原始的匹配点结果(匹配点过少的时候通过RANSAC处理后,可能会得到0个匹配点的结果).
if (outMask.Rows > )
{
byte[] maskBytes = new byte[outMask.Rows * outMask.Cols];
outMask.GetArray(, , maskBytes);
Cv2.DrawMatches(matSrc, keyPointsSrc, matTo, keyPointsTo, goodMatches, outMat, matchesMask: maskBytes, flags: DrawMatchesFlags.NotDrawSinglePoints);
}
else
Cv2.DrawMatches(matSrc, keyPointsSrc, matTo, keyPointsTo, goodMatches, outMat, flags: DrawMatchesFlags.NotDrawSinglePoints);
return OpenCvSharp.Extensions.BitmapConverter.ToBitmap(outMat);
}
}
}

SURF算法

public static Bitmap MatchPicBySurf(Bitmap imgSrc, Bitmap imgSub, double threshold = )
{
using (Mat matSrc = imgSrc.ToMat())
using (Mat matTo = imgSub.ToMat())
using (Mat matSrcRet = new Mat())
using (Mat matToRet = new Mat())
{
KeyPoint[] keyPointsSrc, keyPointsTo;
using (var surf = OpenCvSharp.XFeatures2D.SURF.Create(threshold,,,true,true))
{
surf.DetectAndCompute(matSrc, null, out keyPointsSrc, matSrcRet);
surf.DetectAndCompute(matTo, null, out keyPointsTo, matToRet);
} using (var flnMatcher = new OpenCvSharp.FlannBasedMatcher())
{
var matches = flnMatcher.Match(matSrcRet, matToRet);
//求最小最大距离
double minDistance = ;//反向逼近
double maxDistance = ;
for (int i = ; i < matSrcRet.Rows; i++)
{
double distance = matches[i].Distance;
if (distance > maxDistance)
{
maxDistance = distance;
}
if (distance < minDistance)
{
minDistance = distance;
}
}
Console.WriteLine($"max distance : {maxDistance}");
Console.WriteLine($"min distance : {minDistance}"); var pointsSrc = new List<Point2f>();
var pointsDst = new List<Point2f>();
//筛选较好的匹配点
var goodMatches = new List<DMatch>();
for (int i = ; i < matSrcRet.Rows; i++)
{
double distance = matches[i].Distance;
if (distance < Math.Max(minDistance * , 0.02))
{
pointsSrc.Add(keyPointsSrc[matches[i].QueryIdx].Pt);
pointsDst.Add(keyPointsTo[matches[i].TrainIdx].Pt);
//距离小于范围的压入新的DMatch
goodMatches.Add(matches[i]);
}
} var outMat = new Mat(); // 算法RANSAC对匹配的结果做过滤
var pSrc = pointsSrc.ConvertAll(Point2fToPoint2d);
var pDst = pointsDst.ConvertAll(Point2fToPoint2d);
var outMask = new Mat();
// 如果原始的匹配结果为空, 则跳过过滤步骤
if (pSrc.Count > && pDst.Count > )
Cv2.FindHomography(pSrc, pDst, HomographyMethods.Ransac, mask: outMask);
// 如果通过RANSAC处理后的匹配点大于10个,才应用过滤. 否则使用原始的匹配点结果(匹配点过少的时候通过RANSAC处理后,可能会得到0个匹配点的结果).
if (outMask.Rows > )
{
byte[] maskBytes = new byte[outMask.Rows * outMask.Cols];
outMask.GetArray(, , maskBytes);
Cv2.DrawMatches(matSrc, keyPointsSrc, matTo, keyPointsTo, goodMatches, outMat, matchesMask: maskBytes, flags: DrawMatchesFlags.NotDrawSinglePoints);
}
else
Cv2.DrawMatches(matSrc, keyPointsSrc, matTo, keyPointsTo, goodMatches, outMat, flags: DrawMatchesFlags.NotDrawSinglePoints);
return OpenCvSharp.Extensions.BitmapConverter.ToBitmap(outMat);
}
}
}

模板匹配

 public static System.Drawing.Point FindPicFromImage(Bitmap imgSrc, Bitmap imgSub, double threshold = 0.9)
{
OpenCvSharp.Mat srcMat = null;
OpenCvSharp.Mat dstMat = null;
OpenCvSharp.OutputArray outArray = null;
try
{
srcMat = imgSrc.ToMat();
dstMat = imgSub.ToMat();
outArray = OpenCvSharp.OutputArray.Create(srcMat); OpenCvSharp.Cv2.MatchTemplate(srcMat, dstMat, outArray, Common.templateMatchModes);
double minValue, maxValue;
OpenCvSharp.Point location, point;
OpenCvSharp.Cv2.MinMaxLoc(OpenCvSharp.InputArray.Create(outArray.GetMat()), out minValue, out maxValue, out location, out point);
Console.WriteLine(maxValue);
if (maxValue >= threshold)
return new System.Drawing.Point(point.X, point.Y);
return System.Drawing.Point.Empty;
}
catch(Exception ex)
{
return System.Drawing.Point.Empty;
}
finally
{
if (srcMat != null)
srcMat.Dispose();
if (dstMat != null)
dstMat.Dispose();
if (outArray != null)
outArray.Dispose();
}
}

OpenCvSharp 通过特征点匹配图片的更多相关文章

  1. sift、surf、orb 特征提取及最优特征点匹配

    目录 sift sift特征简介 sift特征提取步骤 surf surf特征简介 surf特征提取步骤 orb orb特征简介 orb特征提取算法 代码实现 特征提取 特征匹配 附录 sift si ...

  2. aforge通过角点匹配图片相似度

    我不知道什么原因,人品不好还是啥的 ExhaustiveTemplateMatching这个类无法高精确度的匹配图片 ........... 换一种方式,就好得多 /// <summary> ...

  3. OpenCV使用FLANN进行特征点匹配

    使用FLANN进行特征点匹配 目标 在本教程中我们将涉及以下内容: 使用 FlannBasedMatcher 接口以及函数 FLANN 实现快速高效匹配( 快速最近邻逼近搜索函数库(Fast Appr ...

  4. opencv 增强现实(二):特征点匹配

    import cv2 as cv import numpy as np # def draw_keypoints(img, keypoints): # for kp in keypoints: # x ...

  5. 第二篇 特征点匹配以及openvslam中的相关实现详解

    配置文件 在进入正题之前先做一些铺垫,在openvslam中,配置文件是必须要正确的以.yaml格式提供,通常需要指明使用的相机模型,ORB特征检测参数,跟踪参数等. #==============# ...

  6. (2)特征点匹配,并求旋转矩阵R和位移向量t

    include头文件中有slamBase.h # pragma once // 各种头文件 // C++标准库 #include <fstream> #include <vector ...

  7. 图像特征点匹配C代码

    #include "opencv2/core/core.hpp" #include "highgui.h" #include "opencv2/img ...

  8. [OpenCV]DMatch类和KeyPoints类:特征点匹配

    DMatch struct CV_EXPORTS_W_SIMPLE DMatch { CV_WRAP DMatch() : queryIdx(-), trainIdx(-), imgIdx(-), d ...

  9. opencv surf特征点匹配拼接源码

    http://blog.csdn.net/huixingshao/article/details/42672073 /** * @file SURF_Homography * @brief SURF ...

随机推荐

  1. 比特币and区块链

    比特币简介 比特币(Bitcoin:比特金)最早是一种网络虚拟货币,可以购买现实生活当中的物品.它的特点是分散化.匿名.只能在数字世界使用,不属于任何国家和金融机构,并且不受地域的限制,可以在世界上的 ...

  2. springcloud-熔断监控Hystrix Dashboard和Turbine

    作者:纯洁的微笑出处:http://www.ityouknow.com/ 版权归作者所有,转载请注明出处 Hystrix-dashboard是一款针对Hystrix进行实时监控的工具,通过Hystri ...

  3. 关于写自定义的SQL接口出现的问题

    1.<if test="   as != ' ' "></if> 与    <if test='   as != " "    ' ...

  4. 【iOS】手动抛出异常

    之前没遇到过需要手动抛出异常的时候,这次见到了,记录一下.示例代码如下: /** 如果调用 [[BNRItemStore alloc] init],就提示应该使用 [BNRItemStore shar ...

  5. Java连载10-数据类型取值范围&转义字符

    一.数据类型取值范围 二.八种数据类型在成员变量中的默认值 (1)成员变量,没有赋值,编译不会报错,系统会自动给赋值 byte\int\short\long默认值为0:float\double默认值为 ...

  6. 第三章、Go-内建容器

    3.1.数组 (1)数组的定义 package main import ( "fmt" ) func main() { //用var定义数组可以不用赋初值 var arr1 [5] ...

  7. CEPH 自动化测试用例介绍

    1.QA 的内部逻辑关系. 首先用一个图表示一下QA的内部的逻辑关系. 2.QA的脚本介绍 3.QA脚本运行

  8. 洛谷P3572题解

    这道题实在是一道 毒瘤 题,太坑爹了.那个写 \(deque\) 的题解亲测只有80分,原因 不言而明 ,这道题居然 丧心病狂 到 卡STL . 好了,不吐槽了,进入正题 题目分析: 这是一道十分 简 ...

  9. js学习之数据类型

    js学习之数据类型 基础类型:number string boolean null undefined 引用类型:object array function undefined值是派生自null值的( ...

  10. PHP版本的区别与用法详解

    在我们安装PHP模块时,有时需要注意PHP编译的版本,下面讲解下PHP中VC6.VC9.TS.NTS版本的区别与用法详解,介绍php的两种执行方式. 1. VC6与VC9的区别:VC6版本是使用Vis ...