OpenCvSharp 通过特征点匹配图片
现在的手游基本都是重复操作,一个动作要等好久,结束之后继续另一个动作.很麻烦,所以动起了自己写一个游戏辅助的心思.
这个辅助本身没什么难度,就是通过不断的截图,然后从这个截图中找出预先截好的能代表相应动作的按钮或者触发条件的小图.
找到之后获取该子区域的左上角坐标,然后通过windows API调用鼠标或者键盘做操作就行了.
这里面最难的也就是找图了,因为要精准找图,而且最好能适应不同的分辨率下找图,所以在模板匹配的基础上,就有了SIFT和SURF的特征点找图方式.
在写的过程中查找资料,大都是C++ 或者python的, 很少有原生的C#实现, 所以我就直接拿来翻译过来了(稍作改动).
SIFT算法
public static Bitmap MatchPicBySift(Bitmap imgSrc, Bitmap imgSub)
{
using (Mat matSrc = imgSrc.ToMat())
using (Mat matTo = imgSub.ToMat())
using (Mat matSrcRet = new Mat())
using (Mat matToRet = new Mat())
{
KeyPoint[] keyPointsSrc, keyPointsTo;
using (var sift = OpenCvSharp.XFeatures2D.SIFT.Create())
{
sift.DetectAndCompute(matSrc, null, out keyPointsSrc, matSrcRet);
sift.DetectAndCompute(matTo, null, out keyPointsTo, matToRet);
}
using (var bfMatcher = new OpenCvSharp.BFMatcher())
{
var matches = bfMatcher.KnnMatch(matSrcRet, matToRet, k: ); var pointsSrc = new List<Point2f>();
var pointsDst = new List<Point2f>();
var goodMatches = new List<DMatch>();
foreach (DMatch[] items in matches.Where(x => x.Length > ))
{
if (items[].Distance < 0.5 * items[].Distance)
{
pointsSrc.Add(keyPointsSrc[items[].QueryIdx].Pt);
pointsDst.Add(keyPointsTo[items[].TrainIdx].Pt);
goodMatches.Add(items[]);
Console.WriteLine($"{keyPointsSrc[items[0].QueryIdx].Pt.X}, {keyPointsSrc[items[0].QueryIdx].Pt.Y}");
}
} var outMat = new Mat(); // 算法RANSAC对匹配的结果做过滤
var pSrc = pointsSrc.ConvertAll(Point2fToPoint2d);
var pDst = pointsDst.ConvertAll(Point2fToPoint2d);
var outMask = new Mat();
// 如果原始的匹配结果为空, 则跳过过滤步骤
if (pSrc.Count > && pDst.Count > )
Cv2.FindHomography(pSrc, pDst, HomographyMethods.Ransac, mask: outMask);
// 如果通过RANSAC处理后的匹配点大于10个,才应用过滤. 否则使用原始的匹配点结果(匹配点过少的时候通过RANSAC处理后,可能会得到0个匹配点的结果).
if (outMask.Rows > )
{
byte[] maskBytes = new byte[outMask.Rows * outMask.Cols];
outMask.GetArray(, , maskBytes);
Cv2.DrawMatches(matSrc, keyPointsSrc, matTo, keyPointsTo, goodMatches, outMat, matchesMask: maskBytes, flags: DrawMatchesFlags.NotDrawSinglePoints);
}
else
Cv2.DrawMatches(matSrc, keyPointsSrc, matTo, keyPointsTo, goodMatches, outMat, flags: DrawMatchesFlags.NotDrawSinglePoints);
return OpenCvSharp.Extensions.BitmapConverter.ToBitmap(outMat);
}
}
}
SURF算法
public static Bitmap MatchPicBySurf(Bitmap imgSrc, Bitmap imgSub, double threshold = )
{
using (Mat matSrc = imgSrc.ToMat())
using (Mat matTo = imgSub.ToMat())
using (Mat matSrcRet = new Mat())
using (Mat matToRet = new Mat())
{
KeyPoint[] keyPointsSrc, keyPointsTo;
using (var surf = OpenCvSharp.XFeatures2D.SURF.Create(threshold,,,true,true))
{
surf.DetectAndCompute(matSrc, null, out keyPointsSrc, matSrcRet);
surf.DetectAndCompute(matTo, null, out keyPointsTo, matToRet);
} using (var flnMatcher = new OpenCvSharp.FlannBasedMatcher())
{
var matches = flnMatcher.Match(matSrcRet, matToRet);
//求最小最大距离
double minDistance = ;//反向逼近
double maxDistance = ;
for (int i = ; i < matSrcRet.Rows; i++)
{
double distance = matches[i].Distance;
if (distance > maxDistance)
{
maxDistance = distance;
}
if (distance < minDistance)
{
minDistance = distance;
}
}
Console.WriteLine($"max distance : {maxDistance}");
Console.WriteLine($"min distance : {minDistance}"); var pointsSrc = new List<Point2f>();
var pointsDst = new List<Point2f>();
//筛选较好的匹配点
var goodMatches = new List<DMatch>();
for (int i = ; i < matSrcRet.Rows; i++)
{
double distance = matches[i].Distance;
if (distance < Math.Max(minDistance * , 0.02))
{
pointsSrc.Add(keyPointsSrc[matches[i].QueryIdx].Pt);
pointsDst.Add(keyPointsTo[matches[i].TrainIdx].Pt);
//距离小于范围的压入新的DMatch
goodMatches.Add(matches[i]);
}
} var outMat = new Mat(); // 算法RANSAC对匹配的结果做过滤
var pSrc = pointsSrc.ConvertAll(Point2fToPoint2d);
var pDst = pointsDst.ConvertAll(Point2fToPoint2d);
var outMask = new Mat();
// 如果原始的匹配结果为空, 则跳过过滤步骤
if (pSrc.Count > && pDst.Count > )
Cv2.FindHomography(pSrc, pDst, HomographyMethods.Ransac, mask: outMask);
// 如果通过RANSAC处理后的匹配点大于10个,才应用过滤. 否则使用原始的匹配点结果(匹配点过少的时候通过RANSAC处理后,可能会得到0个匹配点的结果).
if (outMask.Rows > )
{
byte[] maskBytes = new byte[outMask.Rows * outMask.Cols];
outMask.GetArray(, , maskBytes);
Cv2.DrawMatches(matSrc, keyPointsSrc, matTo, keyPointsTo, goodMatches, outMat, matchesMask: maskBytes, flags: DrawMatchesFlags.NotDrawSinglePoints);
}
else
Cv2.DrawMatches(matSrc, keyPointsSrc, matTo, keyPointsTo, goodMatches, outMat, flags: DrawMatchesFlags.NotDrawSinglePoints);
return OpenCvSharp.Extensions.BitmapConverter.ToBitmap(outMat);
}
}
}

模板匹配
public static System.Drawing.Point FindPicFromImage(Bitmap imgSrc, Bitmap imgSub, double threshold = 0.9)
{
OpenCvSharp.Mat srcMat = null;
OpenCvSharp.Mat dstMat = null;
OpenCvSharp.OutputArray outArray = null;
try
{
srcMat = imgSrc.ToMat();
dstMat = imgSub.ToMat();
outArray = OpenCvSharp.OutputArray.Create(srcMat); OpenCvSharp.Cv2.MatchTemplate(srcMat, dstMat, outArray, Common.templateMatchModes);
double minValue, maxValue;
OpenCvSharp.Point location, point;
OpenCvSharp.Cv2.MinMaxLoc(OpenCvSharp.InputArray.Create(outArray.GetMat()), out minValue, out maxValue, out location, out point);
Console.WriteLine(maxValue);
if (maxValue >= threshold)
return new System.Drawing.Point(point.X, point.Y);
return System.Drawing.Point.Empty;
}
catch(Exception ex)
{
return System.Drawing.Point.Empty;
}
finally
{
if (srcMat != null)
srcMat.Dispose();
if (dstMat != null)
dstMat.Dispose();
if (outArray != null)
outArray.Dispose();
}
}

OpenCvSharp 通过特征点匹配图片的更多相关文章
- sift、surf、orb 特征提取及最优特征点匹配
目录 sift sift特征简介 sift特征提取步骤 surf surf特征简介 surf特征提取步骤 orb orb特征简介 orb特征提取算法 代码实现 特征提取 特征匹配 附录 sift si ...
- aforge通过角点匹配图片相似度
我不知道什么原因,人品不好还是啥的 ExhaustiveTemplateMatching这个类无法高精确度的匹配图片 ........... 换一种方式,就好得多 /// <summary> ...
- OpenCV使用FLANN进行特征点匹配
使用FLANN进行特征点匹配 目标 在本教程中我们将涉及以下内容: 使用 FlannBasedMatcher 接口以及函数 FLANN 实现快速高效匹配( 快速最近邻逼近搜索函数库(Fast Appr ...
- opencv 增强现实(二):特征点匹配
import cv2 as cv import numpy as np # def draw_keypoints(img, keypoints): # for kp in keypoints: # x ...
- 第二篇 特征点匹配以及openvslam中的相关实现详解
配置文件 在进入正题之前先做一些铺垫,在openvslam中,配置文件是必须要正确的以.yaml格式提供,通常需要指明使用的相机模型,ORB特征检测参数,跟踪参数等. #==============# ...
- (2)特征点匹配,并求旋转矩阵R和位移向量t
include头文件中有slamBase.h # pragma once // 各种头文件 // C++标准库 #include <fstream> #include <vector ...
- 图像特征点匹配C代码
#include "opencv2/core/core.hpp" #include "highgui.h" #include "opencv2/img ...
- [OpenCV]DMatch类和KeyPoints类:特征点匹配
DMatch struct CV_EXPORTS_W_SIMPLE DMatch { CV_WRAP DMatch() : queryIdx(-), trainIdx(-), imgIdx(-), d ...
- opencv surf特征点匹配拼接源码
http://blog.csdn.net/huixingshao/article/details/42672073 /** * @file SURF_Homography * @brief SURF ...
随机推荐
- .NET Core CSharp初级篇 类的生命历程
.NET Core CSharp初级篇 1-7 本节内容为类的生命周期 引言 对象究竟是一个什么东西?对于许多初学者而言,对象都是一个非常抽象的知识点.如果非要用一句话描述,我觉得"万物皆对 ...
- Linux基础之快照克隆、Xshell优化、Linux历史
今天主要分享4个Linux基础知识,第一个知识是虚拟机快照,第二个是虚拟机克隆,第三个是优化Xshell,第四个是简述Linux历史. 先分享第一个知识——虚拟机快照. 1.4)虚拟机快照 虚拟机快照 ...
- ERROR 临时
ERROR ITMS-4238: "Redundant Binary Upload. There already exists a binary upload with build vers ...
- 虚拟机ip地址从ipv6改为ipv4相关问题
有一次打开虚拟机时,Xshell连接不上虚拟机,就很奇怪,然后查看虚拟机的ip地址,发现显示为ipv6格式,然后总结了两种情况如下: 第一种情况: onboot为no时显示ipv6地址, 改为yes即 ...
- 内容汇总(c语言)
一,内容 常量(整型,浮点型,字符型,字符串型,符号常量) 变量(基本类型:整形,浮点型,字符型,枚举型:构造类型:数组,结构体,共用体:另外还有指针类型和NULL) 顺序结构 分支结构 循环结构 当 ...
- Appium+python自动化(二十八)- 滑呀滑,滑到奈何桥喝碗孟婆汤 - 高级滑动(超详解)
简介 奈何桥上叹奈何,三生石前憾三生,彼岸花下非彼岸,奈何三生彼岸人. 相传过了鬼门关便上一条路叫黄泉路,路上盛开着只见花,不见叶的彼岸花.花叶生生两不见,相念相惜永相失,路尽头有一条河叫忘川河,河上 ...
- jdk1.8 HashMap底层数据结构:深入解析为什么jdk1.8 HashMap的容量一定要是2的n次幂
前言 1.本文根据jdk1.8源码来分析HashMap的容量取值问题: 2.本文有做 jdk1.8 HashMap.resize()扩容方法的源码解析:见下文“一.3.扩容:同样需要保证扩容后的容量是 ...
- 解决oh-my-zsh中git分支显示乱码问题
oh-my-zsh显示github分支时,如果当前文件夹不是git仓库,它就会显示乱码.倒腾了好几个小时终于弄清楚是oh-my-zsh中函数”git_prompt_info“的锅,然后又花了半个多小时 ...
- iview自定义实现多级表头
最近更新: 2018-07-19 注意:最新版iview已经提供多级表头功能 参考 原理:利用多个Table组件通过显示和隐藏thead和tbody来拼接表格(较粗暴) html <div st ...
- 三层架构(MVC)实现简单登陆注册验证(含验证码)
前言在我的上一篇微博里我已经提出了登陆的方法,当时我采取的是纯servlet方式,因为当时刚接触到servlet,正好网上没有这方面的全面讲解,所以我就发飙了.不过在现实生产中我们大多采用的三层架构. ...