以下操作均在 6.7.1版本中正常

c# ES客户端 测试项目地址:https://gitee.com/dhclly/IceDog.ElasticSearchClient/tree/master/src/IceDog.ElasticSearchClient.MSTest

文档

basic

GET /?pretty
curl 'http://localhost:9200/?pretty' 正常返回类似如下结果 {
"name" : "id_Cdrf",
"cluster_name" : "docker-cluster",
"cluster_uuid" : "OVVjOYXmRLmH0_x6QnS6sw",
"version" : {
"number" : "6.7.1",
"build_flavor" : "default",
"build_type" : "docker",
"build_hash" : "2f32220",
"build_date" : "2019-04-02T15:59:27.961366Z",
"build_snapshot" : false,
"lucene_version" : "7.7.0",
"minimum_wire_compatibility_version" : "5.6.0",
"minimum_index_compatibility_version" : "5.0.0"
},
"tagline" : "You Know, for Search"
}

操作记录

所有操作都基于数据集合 s_flights ,详情查看文件 es-operation-datasource.md

默认查询全部实际上只返回前10条数据

数据说明

航班信息(注释后面是mapping的类型):

{
"FlightNum" : "EN9FHUD", //航班编号 keyword
"DestCountry" : "CA", //目的地国家名 keyword
"OriginWeather" : "Rain",//出发地天气 keyword
"OriginCityName" : "Detroit", // 出发地城市名 keyword
"AvgTicketPrice" : 798.6925673856011, // 平均机票价格 float
"DistanceMiles" : 1586.2909176475928,//出发地到目的地的英里数 float
"FlightDelay" : true, //航班是否延迟 boolean
"DestWeather" : "Rain", //目的地天气 keyword
"Dest" : "Edmonton International Airport",//目的地机场 keyword
"FlightDelayType" : "Security Delay", // 航班延迟类型 keyword
"OriginCountry" : "US", //出发地国家名 keyword
"dayOfWeek" : 6, //星期 integer
"DistanceKilometers" : 2552.8877705706477, //出发地到目的地的公里数 float
"timestamp" : "2019-04-28T06:25:17", //时间戳 date
"DestLocation" : {//目的地坐标 geo_point
"lat" : "53.30970001", //纬度
"lon" : "-113.5800018" //经度
},
"DestAirportID" : "CYEG", //目的地机场ID keyword
"Carrier" : "Kibana Airlines", //航空公司名 keyword
"Cancelled" : false, //是否取消航班 boolean
"FlightTimeMin" : 451.3759823515883, //航班飞行最小分钟数 float
"Origin" : "Detroit Metropolitan Wayne County Airport",//出发地机场 keyword
"OriginLocation" : {//出发地坐标 geo_point
"lat" : "42.21239853",//纬度
"lon" : "-83.35340118"//经度
},
"DestRegion" : "CA-AB",//目的地区域 keyword
"OriginAirportID" : "DTW", //出发地的机场ID keyword
"OriginRegion" : "US-MI", //出发地区域 keyword
"DestCityName" : "Edmonton", //目的地城市名称 keyword
"FlightTimeHour" : 7.522933039193138, //航班飞行小时数 keyword
"FlightDelayMin" : 255 //航班延迟最小分钟数 integer
}

操作记录

由于数据体数据太多,所以需要对数据返回进行如下方式过滤

如下只返回定义的五个属性

轻量查询方式:

GET /s_flights/_doc/_search?_source=FlightNum,Origin,OriginCountry,Dest,DestCountry

请求体方式:

GET /s_flights/_doc/_search
{
"_source": [
"FlightNum",
"Origin",
"OriginCountry",
"Dest",
"DestCountry"
]
}

添加数据

mapping定义的数据不需要所有都填写

添加单独一条数据

PUT /s_flights/_doc/100
{
"FlightNum": "C12345A",
"Origin": "重庆",
"Dest": "北京"
}

添加单独一条数据自动生成 id

POST /s_flights/_doc/
{
"FlightNum": "C12345A",
"Origin": "重庆",
"Dest": "北京"
}

确保是添加新文档,而不是更新文档

PUT /s_flights/_doc/BxOIj2oBXEJSGxQ5yn4k?op_type=create
{
"FlightNum": "C12345A",
"Origin": "重庆",
"Dest": "北京"
}
PUT /s_flights/_doc/BxOIj2oBXEJSGxQ5yn4k/_create
{
"FlightNum": "C12345A",
"Origin": "重庆",
"Dest": "北京"
}

doc as upsert

POST /s_flights/_doc/1
{
"doc": {
"FlightNum": "C123333345A",
"Origin": "重222庆",
"Dest": "北京",
"bb":11
},
"doc_as_upsert": true
}

存在属性再更新就会返回 noop(no operation) 操作

POST /s_flights/_doc/1/_update
{
"doc" : {
"moreInfo":{
"counter":1
}
}
}

批量插入数据

POST _bulk
{"create":{"_index":"s_flights","_type":"_doc","_id":"101"}}
{"FlightNum":"C12345B","Origin":"重庆","Dest":"上海"}
{"create":{"_index":"s_flights","_type":"_doc","_id":"102"}}
{"FlightNum":"C12345C","Origin":"重庆","Dest":"武汉"}

删除数据

删除数据_id为100的

DELETE /s_flights/_doc/100

批量删除数据

POST _bulk
{"delete":{"_index":"s_flights","_type":"_doc","_id":"101"}}
{"delete":{"_index":"s_flights","_type":"_doc","_id":"102"}}

修改(更新)数据

https://www.elastic.co/guide/en/elasticsearch/reference/6.7/docs-update.html

更新或添加数据

POST /s_flights/_doc/1/_update
{
"doc" : {
"moreInfo":{
"tags" : [ "airline","flight","aeroplane","airplane"],
"counter":1,
"memo_1":""
}
}
}
GET /s_flights/_doc/1?_source=moreInfo

脚本方式更新字段值:

POST s_flights/_doc/1/_update
{
"script" : "ctx._source.moreInfo.counter+=1"
}
POST s_flights/_doc/1/_update
{
"script" : "ctx._source.moreInfo.memo_1='good time'"
}
GET /s_flights/_doc/1?_source=moreInfo

如果数据不存在,则先使用upsert创建文档,然后再次执行,则会执行脚本进行递增。

DELETE s_flights/_doc/1
POST s_flights/_doc/1/_update
{
"script": {
"source": "ctx._source.view_counter += params.count",
"lang": "painless",
"params": {
"count": 1
}
},
"upsert": {
"moreInfo": {
"tags": [
"airline",
"flight",
"aeroplane",
"airplane"
],
"counter": 1,
"memo_1": ""
},
"view_counter": 1
}
}
GET /s_flights/_doc/1

flag scripted_upsert 的作用,如果数据不存在,则先使用upsert创建文档,然后执行脚本

POST s_flights/_doc/1/_update
{
"scripted_upsert":true,
"script": {
"source": "ctx._source.view_counter += params.count",
"lang": "painless",
"params": {
"count": 1
}
},
"upsert": {
"moreInfo": {
"tags": [
"airline",
"flight",
"aeroplane",
"airplane"
],
"counter": 1,
"memo_1": ""
},
"view_counter": 1
}
}
GET /s_flights/_doc/1

通过scripts更新文档数据

POST s_flights/_doc/1/_update
{
"script": {
"source": "ctx._source.moreInfo.counter_status = ctx._source.moreInfo.counter === params.count ? 'isEnough' : params.count",
"params": {
"count": 10
},
"lang": "painless"
}
}
GET /s_flights/_doc/1?_source=moreInfo

查询数据

https://www.elastic.co/guide/en/elasticsearch/reference/current/term-level-queries.html

https://www.cnblogs.com/ghj1976/p/5293250.html

https://donlianli.iteye.com/blog/2094305

https://blog.csdn.net/weixin_43430036/article/details/83272018

轻量查询

获取所有数据(默认只查询10条出来)

GET /s_flights/_search?&_source=FlightNum,Origin,OriginCountry,Dest,DestCountry

获取id为1的数据

GET /s_flights/_doc/1?&_source=FlightNum,Origin,OriginCountry,Dest,DestCountry

获取数据请求头,返回的是状态码,以此判断数据是否存在

HEAD /s_flights/_doc/1

查询出发国家是US的数据

GET /s_flights/_search?q=OriginCountry:US&_source=FlightNum,Origin,OriginCountry,Dest,DestCountry

查询出发国家是US CN的数据

GET /s_flights/_search?q=OriginCountry:US+CN&_source=FlightNum,Origin,OriginCountry,Dest,DestCountry

查询mapping

GET /s_flights/_mapping/_doc

查看集群健康

GET /_cluster/health

通配符查询(wildcards query)

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-wildcard-query.html#query-dsl-wildcard-query

查询出发地国家名以C开头的

GET /s_flights/_search
{
"_source": [
"FlightNum",
"Origin",
"OriginCountry",
"Dest",
"DestCountry"
],
"query": {
"wildcard": {
"OriginCountry": {
"value": "C*"
}
}
}
}

查询航班编号值是 F开头 M9结尾的

GET /s_flights/_search
{
"_source": [
"FlightNum",
"Origin",
"OriginCountry",
"Dest",
"DestCountry"
],
"query": {
"wildcard": {
"FlightNum": {
"value": "F????M9"
}
}
}
}

短语查询(term query)

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-term-query.html

查询 FlightNum 为 FFEVPM9的结果

GET /s_flights/_search
{
"_source": [
"FlightNum",
"Origin",
"OriginCountry",
"Dest",
"DestCountry"
],
"query": {
"term": {
"FlightNum": {
"value": "FFEVPM9"
}
}
}
}

多短语查询(terms query)

查询 FlightNum 为 6DJ0DZM ILXJVIF 的结果

GET /s_flights/_search
{
"_source": [
"FlightNum",
"Origin",
"OriginCountry",
"Dest",
"DestCountry"
],
"query": {
"terms": {
"FlightNum": ["6DJ0DZM","ILXJVIF"]
}
}
}

term set query

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-terms-set-query.html

(范围查询)range query

查询飞行距离在100km(包含100km)到200km(包含200km)之间的结果

GET /s_flights/_search
{
"_source": [
"FlightNum",
"DistanceKilometers"
],
"query": {
"range": {
"DistanceKilometers": {
"gte": 100,
"lte": 200
}
}
}
}

exists query

prefix query

regexp query

fuzzy query

GET /s_flights/_search
{
"_source": [
"FlightNum",
"Origin"
],
"query": {
"fuzzy": {
"Origin": "bai"
}
}
}

type query

ids query

请求体查询(ad-hoc)

查询所有数据

GET /s_flights/_search
{
"_source": [
"FlightNum",
"Origin",
"OriginCountry",
"Dest",
"DestCountry"
],
"query": {
"match_all": {}
}
}

上面的等价于

GET /s_flights/_search?&_source=FlightNum,Origin,OriginCountry,Dest,DestCountry

匹配查询出发国家是US的数据

GET /s_flights/_search
{
"_source": [
"FlightNum",
"Origin",
"OriginCountry",
"Dest",
"DestCountry"
],
"query": {
"match": {
"OriginCountry": "US"
}
}
}

查询出发地包含Shanghai Tokyo的数据 (Origin是text类型,可以进行分词查询)

GET /s_flights/_search
{
"_source": [
"FlightNum",
"Origin",
"OriginCountry",
"Dest",
"DestCountry"
],
"query": {
"match": {
"Origin": "Shanghai Tokyo"
}
}
}

匹配查询出发地包含Shanghai Tokyo的数据 (Origin此处被当做是keyword类型,不可以进行分词查询,查询不出结果)

GET /s_flights/_search
{
"_source": [
"FlightNum",
"Origin",
"OriginCountry",
"Dest",
"DestCountry"
],
"query": {
"match": {
"Origin.keyword": "Shanghai Tokyo"
}
}
}

匹配查询出发地包含Shanghai Tokyo的数据 (Origin此处被当做是keyword类型,不可以进行分词查询),可以对整个词作为关键字进行查询,有结果

GET /s_flights/_search
{
"_source": [
"FlightNum",
"Origin",
"OriginCountry",
"Dest",
"DestCountry"
],
"query": {
"match": {
"Origin.keyword": "Shanghai Hongqiao International Airport"
}
}
}

匹配短语查询出发地包含Shanghai Hongqiao International的数据 (Origin是text类型,可以进行分词查询)

正常查询,查出一堆数据

GET /s_flights/_search
{
"_source": [
"FlightNum",
"Origin",
"OriginCountry",
"Dest",
"DestCountry"
],
"query": {
"match": {
"Origin": "Shanghai Hongqiao International"
}
}
}

匹配短语查询,只能查出一条

GET /s_flights/_search
{
"_source": [
"FlightNum",
"Origin",
"OriginCountry",
"Dest",
"DestCountry"
],
"query": {
"match_phrase": {
"Origin": "Shanghai Hongqiao International"
}
}
}

高亮查询,匹配短语查询出发地包含Shanghai Hongqiao International的数据 (Origin是text类型,可以进行分词查询),并对查询结果进行高亮(即对返回结果添加额外的标签)

GET /s_flights/_search
{
"_source": [
"FlightNum",
"Origin",
"OriginCountry",
"Dest",
"DestCountry"
],
"query": {
"match": {
"Origin": "Shanghai Hongqiao International"
}
}
, "highlight": {
"fields": {
"Origin":{}
}
}
}

自定义highlight 标签

GET /s_flights/_search
{
"_source": [
"FlightNum",
"Origin",
"OriginCountry",
"Dest",
"DestCountry"
],
"query": {
"match": {
"Origin": "Shanghai Hongqiao International"
}
}
, "highlight": {
"fields": {
"Origin":{
"pre_tags": "<span class='highlight '>",
"post_tags": "</span>"
}
}
}
}

高亮标签设置内部优先。

GET /s_flights/_search
{
"_source": [
"FlightNum",
"Origin",
"OriginCountry",
"Dest",
"DestCountry"
],
"query": {
"match": {
"Origin": "Shanghai Hongqiao International"
}
},
"highlight": {
"fields": {
"Origin": {
"pre_tags": "<span class='hightlight-origin'>",
"post_tags": "</span>"
}
},
"pre_tags": "<span class='hightlight'>",
"post_tags": "</span>"
}
}

查询出发国家是US,同时航班飞行最小分钟数小于100分钟的数据

GET /s_flights/_search
{
"_source": [
"FlightNum",
"Origin",
"OriginCountry",
"Dest",
"DestCountry"
],
"query": {
"bool": {
"must": {
"match": {
"OriginCountry": "US"
}
},
"filter": {
"range": {
"FlightTimeMin": {
"lt": 100
}
}
}
}
}
}

查询 OriginCountry 为USA和UK的航班记录

GET /s_flights/_search?q=OriginCountry:US+CA

GET /s_flights/_search
{
"query": {
"terms": {
"OriginCountry": ["US","CA"]
}
}
}

查询结果只显示字段 OriginCountryDestCountry

GET /s_flights/_search
{
"_source": {
"includes": [ "OriginCountry", "DestCountry" ]
},
"query": {
"match_all": {}
}
} GET /s_flights/_search
{
"_source":[ "OriginCountry", "DestCountry" ],
"query": {
"match_all": {}
}
}

查询结果只显示字段 OriginCountry

GET /s_flights/_search
{
"_source":"OriginCountry",
"query": {
"match_all": {}
}
}

不返回 _source

GET /s_flights/_search
{
"_source":false,
"query": {
"match_all": {}
}
}

查询出出发地是"US","NL", "JP" 的航班统计同时查询出每个出发地的不同目的地航班统计

GET /s_flights/_search
{
"_source":false,
"query": {
"terms": {
"OriginCountry": [
"US",
"NL",
"JP",
"CN"
]
}
},
"aggs": {
"all_origin": {
"terms": {
"field": "OriginCountry"
},
"aggs": {
"all_dest": {
"terms": {
"field": "DestCountry"
}
}
}
}
}
}

查询出出发地是"US","NL", "JP" 的航班统计同时查询出每个出发地的不同目的地航班统计,同时统计最小、最大和平均里程数

GET /s_flights/_search
{
"_source": "OriginCountry",
"query": {
"terms": {
"OriginCountry": [
"US",
"NL",
"JP",
"CN"
]
}
},
"aggs": {
"all_origin": {
"terms": {
"field": "OriginCountry"
},
"aggs": {
"all_dest": {
"terms": {
"field": "DestCountry"
}
},
"minDistanceKilometers": {
"min": {
"field": "DistanceKilometers"
}
},
"maxDistanceKilometers": {
"max": {
"field": "DistanceKilometers"
}
},
"avgDistanceKilometers": {
"avg": {
"field": "DistanceKilometers"
}
}
}
},
"minDistanceKilometers": {
"min": {
"field": "DistanceKilometers"
}
},
"maxDistanceKilometers": {
"max": {
"field": "DistanceKilometers"
}
},
"avgDistanceKilometers": {
"avg": {
"field": "DistanceKilometers"
}
}
}
}

查询出发地和目的地都是US的数据

GET /s_flights/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"OriginCountry": "US"
}
},
{
"match": {
"DestCountry": "US"
}
}
]
}
}
}

查询无延机航班,时间范围在 2019-04-28 一天内,同时出发地国家为 "US","NL", "JP" 的航班统计同时查询出每个出发地的不同目的地航班统计

GET /s_flights/_search
{
"query": {
"bool": {
"must": [
{
"bool": {
"must": [
{
"match": {
"FlightDelayType": "No Delay"
}
}
]
}
},
{
"range": {
"timestamp": {
"gte": "2019-04-28 00:00:00",
"lte": "2019-04-29 00:00:00",
"time_zone": "+08:00",
"format": "yyyy-MM-dd HH:mm:ss"
}
}
},
{
"terms": {
"OriginCountry": [
"US",
"NL",
"JP"
]
}
}
]
}
},
"aggs": {
"all_origin": {
"terms": {
"field": "OriginCountry"
},
"aggs": {
"all_dest": {
"terms": {
"field": "DestCountry"
}
}
}
}
}
}

查询匹配天气,匹配 机场id ,最小飞行时间范围,不匹配 DestCountry I 开头 E结尾的

注意:官方数据这个里面如小时数是keyword类型,也就是string类型,所以会导致查询范围会出现有时候又数据,有时候没有数据,range应该针对number date。

GET /s_flights/_search
{
"query": {
"bool": {
"must": [
{
"bool": {
"should": [
{
"match_phrase": {
"DestWeather": "Clear"
}
},
{
"match_phrase": {
"DestWeather": "Sunny"
}
}
]
}
},
{
"terms": {
"OriginAirportID": [
"SHA",
"DWC"
]
}
},
{
"range": {
"FlightTimeMin": {
"gte": 100,
"lte": 900
}
}
}
],
"must_not": [
{
"wildcard": {
"DestCountry": "*E"
}
},
{
"wildcard": {
"DestCountry": {
"value": "I*"
}
}
}
]
}
}
}

_mget查询

获取id 为 1 2的数据

POST /s_flights/_doc/_mget
{
"ids":[1,2]
}

获取id 为 1 3的数据

POST /s_flights/_doc/_mget
{
"docs": [
{
"_id": 1
},
{
"_id": 3
}
]
}

官方教程4 分页

GET /_search

GET /_search?timeout=10ms

# 在所有的索引中搜索所有的类型
GET /_search # 在 gb 索引中搜索所有的类型
GET /gb/_search # 在 gb 和 us 索引中搜索所有的文档
GET /gb,us/_search # 在任何以 g 或者 u 开头的索引中搜索所有的类型
GET /g*,u*/_search #在 gb 索引中搜索 user 类型
/gb/user/_search #在 gb 和 us 索引中搜索 user 和 tweet 类型
/gb,us/user,tweet/_search #在所有的索引中搜索 user 和 tweet 类型
/_all/user,tweet/_search GET /_search?size=5
GET /_search?size=5&from=5
GET /_search?size=5&from=10 和 SQL 使用 LIMIT 关键字返回单个 page 结果的方法相同,Elasticsearch 接受 from 和 size 参数: # 显示应该返回的结果数量,默认是 10
size # 显示应该跳过的初始结果数量,默认是 0
from

在分布式系统中深度分页

理解为什么深度分页是有问题的,我们可以假设在一个有 5 个主分片的索引中搜索。 当我们请求结果的第一页(结果从 1 到 10 ),每一个分片产生前 10 的结果,并且返回给 协调节点 ,协调节点对 50 个结果排序得到全部结果的前 10 个。

现在假设我们请求第 1000 页--结果从 10001 到 10010 。所有都以相同的方式工作除了每个分片不得不产生前10010个结果以外。 然后协调节点对全部 50050 个结果排序最后丢弃掉这些结果中的 50040 个结果。

可以看到,在分布式系统中,对结果排序的成本随分页的深度成指数上升。这就是 web 搜索引擎对任何查询都不要返回超过 1000 个结果的原因。

https://www.elastic.co/guide/cn/elasticsearch/guide/current/pagination.html

批量写入操作 _bulk

https://blog.csdn.net/u010454030/article/details/79872003

bulk api可以在单个请求中一次执行多个索引或者删除操作,使用这种方式可以极大的提升索引性能。

批量操作数据需要在一行

两行数据构成了一次操作,第一行是操作类型可以index,create,update,或者delete,第二行就是我们的可选的数据体,使用这种方式批量插入的时候,我们需要设置的它的Content-Type为application/json

针对不同的操作类型,第二行里面的可选的数据体是不一样的,如下:

(1)index 和 create 第二行是source数据体

(2)delete 没有第二行

(3)update 第二行可以是partial doc,upsert或者是script

我们可以将我们的操作直接写入到一个文本文件中,然后使用curl命令把它发送到服务端:

curl -s -H "Content-Type: application/x-ndjson" -XPOST localhost:9200/_bulk --data-binary "@requests"; echo

https://www.elastic.co/guide/cn/elasticsearch/guide/current/_Document_Metadata.html

https://www.cnblogs.com/wangzhuxing/p/9351245.html

https://blog.51cto.com/13630803/2162641?source=dra

https://elasticsearch.cn/question/5340

https://blog.csdn.net/jianjun200607/article/details/51262976/

https://blog.csdn.net/huwei2003/article/details/47004745

https://www.cnblogs.com/wulaiwei/p/9319821.html

https://www.elastic.co/guide/en/elasticsearch/client/net-api/current/elasticsearch-net-getting-started.html

https://www.cnblogs.com/wulaiwei/p/9319821.html

https://www.cnblogs.com/Angle-Louis/p/4218678.html

ElasticSearch 6.7.1操作纪录的更多相关文章

  1. 使用Hive或Impala执行SQL语句,对存储在Elasticsearch中的数据操作(二)

    CSSDesk body { background-color: #2574b0; } /*! zybuluo */ article,aside,details,figcaption,figure,f ...

  2. 使用Hive或Impala执行SQL语句,对存储在Elasticsearch中的数据操作

    http://www.cnblogs.com/wgp13x/p/4934521.html 内容一样,样式好的版本. 使用Hive或Impala执行SQL语句,对存储在Elasticsearch中的数据 ...

  3. Elasticsearch索引和文档操作

    列出所有索引 现在来看看我们的索引 GET /_cat/indices?v 响应 health status index uuid pri rep docs.count docs.deleted st ...

  4. elasticsearch 7版本 基础操作

    elasticsearch 7版本 基础操作 首先我们浏览器http://localhost:5601/进入 kibana里的Console中输入 首先让我们在 Console 中输入: PUT t1 ...

  5. elasticsearch【更新】操作

    基于上一篇博文基础上,进行es的操作,document的新增比较简单,就不说了,这里主要说说更新操作. 更新操作,有两大类,一个是Replace,一个是Update,就是说一个是替换,一个是更新. 替 ...

  6. 4.ElasticSearch的基本api操作

    1. ElasticSearch的Index 1. 索引初始化 在创建索引之前 对索引进行初始化操作 指定shards数量和replicas数量 curl -XPUT 'http://192.168. ...

  7. 使用Python对ElasticSearch获取数据及操作

    #!/usr/bin/env python# -*- coding: utf-8 -*-""" @Time : 2018/7/4 @Author : LiuXueWen ...

  8. Elasticsearch(Transport Client)常用操作

    这里描述操作elasticsearch采用TransportClient这种方式,官方明确表示在ES 7.0版本中将弃用TransportClient客户端,且在8.0版本中完全移除它. 记录一些常用 ...

  9. ElasticSearch相关概念与客户端操作

    一.Elasticsearch概述 Elasticsearch是面向文档(document oriented)的,这意味着它可以存储整个对象或文档(document).然而它不仅仅是存储,还会索引(i ...

随机推荐

  1. jQuery 源码分析(十) 数据缓存模块 data详解

    jQuery的数据缓存模块以一种安全的方式为DOM元素附加任意类型的数据,避免了在JavaScript对象和DOM元素之间出现循环引用,以及由此而导致的内存泄漏. 数据缓存模块为DOM元素和JavaS ...

  2. 【LOJ#573】【LNR#2】单枪匹马(线段树)

    [LOJ#573][LNR#2]单枪匹马(线段树) 题面 LOJ 题解 考虑拿线段树维护这个值,现在的问题就是左右怎么合并,那么就假设最右侧进来的那个分数是\(\frac{x}{y}\)的形式,那么就 ...

  3. java高并发系列 - 第5天:深入理解进程和线程

    进程 进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础.程序是指令.数据及其组织形式的描述,进程是程序的实体. 进程具有的 ...

  4. Python【day 16-1】面向对象初识

    1.面向对象思想 1.面向过程 1.概念 按照事物的发展流程,第一步,第二步,第三步,一步步往下 2.优缺点 1.优点 简单,流水线式的 2.缺点 可扩展性差 2.面向对象 1.概念 对象:是属性和动 ...

  5. Python【day 14-5】sorted filter map函数应用和练习

    '''''' ''' 内置函数或者和匿名函数结合输出 4,用map来处理字符串列表,把列表中所有人都变成sb,比方alex_sb name=[‘oldboy’,'alex','wusir'] 5,用m ...

  6. 在 sql server 中批量删除表

    通过查询系统表,可以批量获得 drop 语句,执行即可... select 'drop table '+name+';' from sys.tables

  7. 1041. Robot Bounded In Circle

    本题题意: 一开始一个机器人站在了(0,0)上,面朝的方向是北,收到三个序列G,L,R. G:直走 L:向左转 R:向右转 按序执行,永远重复. 返回TRUE,如果处在一个圈. 第一个卡住的点: 1. ...

  8. LED 控制卡 单元板 接口引脚定义

    LED 12接口 使能 <--- OE A ---> 行选择信号 N B ---> 行选择信号 N C ---> 行选择信号 N CLK ---> 时钟信号 N LAT/ ...

  9. Python的4个内置数据结构

    Python提供了4个内置数据结构(内置指可以直接使用,无需先导入),可以保存任何对象集合,分别是列表.元组.字典和集合. 一.列表有序的可变对象集合. 1.列表的创建例子 list1 = []lis ...

  10. 【JavaWeb】JSON基础

    JSON JavaScript Object Notation(JavaScript 对象表示法): JSON是轻量级的文本数据交换格式: JSON独立于语言,具有自我描述性,更易理解: JSON语法 ...