CodeForces 1058 F Putting Boxes Together 树状数组,带权中位数
题意:
现在有n个物品,第i个物品他的位置在a[i],他的重量为w[i]。每一个物品移动一步的代价为他的w[i]。目前有2种操作:
1. x y 将第x的物品的重量改为y
2.l r 将编号在 [ l, r ]之间的所有物品移动到一起,求最小的花费是多少。
如果移动一个物品移动一步的代价是1的话,对于[1,n]来说,那么中间位置就是 a[(1+n)/2]. 也就是最中间的那个物品的位置。
现在移动一步他的代价是w[i],那么中间位置就是 sum(1,k) >= sum(k+1,n) 在满足前面的条件下,k最小。
我们可以用2分跑出最小的k,这样我们就确定了位置。
接来下我们的问题就是如何移动物品了。
我们可以把所有的物品移动到区间[1,n]上,记录下花费。
然后在把这一整段的物品整体移动到对应区间就好了。
注意的就是对于中间点来说,整体区间移动的正负是不一样的。
代码:
#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL mod = (int)1e9+;
const int N = 2e5 + ;
LL tree1[N], tree2[N];
int n, q;
int a[N], w[N];
inline int lowbit(int x){
return x & (-x);
}
void add1(int x, LL v){
for(int i = x; i <= n; i+=lowbit(i))
tree1[i] += v;
}
void add2(int x, LL v){
for(int i = x; i <= n; i+=lowbit(i))
tree2[i] += v;
}
LL query1(int x){
LL ret = ;
for(int i = x; i; i -= lowbit(i))
ret += tree1[i];
return ret;
}
LL query2(int x){
LL ret = ;
for(int i = x; i; i -= lowbit(i))
ret += tree2[i];
return ret % mod;
}
LL sum1(int l, int r){
if(l > r) return ;
return query1(r) - query1(l-);
}
LL sum2(int l, int r){
if(l > r) return ;
return query2(r) - query2(l-);
}
int GG(int l, int r){
if(l == r) return ;
int ll = l, rr = r, mm;
LL tot = sum1(l, r), t1 , t2;
while(ll <= rr){
mm = ll + rr >> ;
t1 = sum1(l, mm);
t2 = tot - t1;
if(t1 < t2) ll = mm + ;
else rr = mm - ;
}
LL ret = ;
ret -= sum2(l,ll-);
ret += ((sum1(l,ll-)%mod) * (a[ll]--(ll-)))%mod;
ret += sum2(ll+,r);
ret -= ((sum1(ll+,r)%mod) * (a[ll]+ -(ll+)))%mod;
return (ret%mod + mod) % mod;
}
int main(){
scanf("%d%d", &n, &q);
for(int i = ; i <= n; i++) scanf("%d", &a[i]);
for(int i = ; i <= n; i++){
scanf("%d", &w[i]);
add1(i, w[i]);
LL v = ((1ll*a[i]-i)*w[i])%mod;
add2(i, v);
}
int l, r;
for(int i = ; i <= q; i++){
scanf("%d%d", &l, &r);
if(l < ){
l = -l;
add1(l, r-w[l]);
LL v = (((1ll*a[l]-l)*r)%mod)-((1ll*a[l]-l)*w[l])%mod;
add2(l, v);
w[l] = r;
}
else printf("%d\n", GG(l,r));
}
return ;
}
CodeForces 1058 F Putting Boxes Together 树状数组,带权中位数的更多相关文章
- Codeforces 1053C Putting Boxes Together 树状数组
原文链接https://www.cnblogs.com/zhouzhendong/p/CF1053C.html 题目传送门 - CF1053C 题意 有 $n$ 个物品,第 $i$ 个物品在位置 $a ...
- CF1093E Intersection of Permutations 树状数组套权值线段树
\(\color{#0066ff}{ 题目描述 }\) 给定整数 \(n\) 和两个 \(1,\dots,n\) 的排列 \(a,b\). \(m\) 个操作,操作有两种: \(1\ l_a\ r_a ...
- BZOJ2141排队——树状数组套权值线段树(带修改的主席树)
题目描述 排排坐,吃果果,生果甜嗦嗦,大家笑呵呵.你一个,我一个,大的分给你,小的留给我,吃完果果唱支歌,大家 乐和和.红星幼儿园的小朋友们排起了长长地队伍,准备吃果果.不过因为小朋友们的身高有所区别 ...
- luogu3380/bzoj3196 二逼平衡树 (树状数组套权值线段树)
带修改区间K大值 这题有很多做法,我的做法是树状数组套权值线段树,修改查询的时候都是按着树状数组的规则找出那log(n)个线段树根,然后一起往下做 时空都是$O(nlog^2n)$的(如果离散化了的话 ...
- Dynamic Rankings(树状数组套权值线段树)
Dynamic Rankings(树状数组套权值线段树) 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[ ...
- [BZOJ 3295] [luogu 3157] [CQOI2011]动态逆序对(树状数组套权值线段树)
[BZOJ 3295] [luogu 3157] [CQOI2011] 动态逆序对 (树状数组套权值线段树) 题面 给出一个长度为n的排列,每次操作删除一个数,求每次操作前排列逆序对的个数 分析 每次 ...
- codeforces 985 E. Pencils and Boxes (dp 树状数组)
E. Pencils and Boxes time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- Codeforces #528 Div2 F (1087F) Rock-Paper-Scissors Champion 树状数组+set
题意:n个人站成一排,初始时刻每个人手中都有一个图案,可能是石头,剪刀,布3个中的1种,之后会随机选取相邻的两个人玩石头剪刀布的游戏,输的人会离开(如果两个人图案相同,则随机选择一个人离开).执行(n ...
- 2018牛客网暑期ACM多校训练营(第五场) F - take - [数学期望][树状数组]
题目链接:https://www.nowcoder.com/acm/contest/143/F 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524288K ...
随机推荐
- 使用阿里云对docker拉取镜像加速
使用docker的时候,总是需要去search镜像,使用国外的源下载太慢,还有诸多的限制,无意中发现可以使用阿里云进行加速,实测有用,废话少说,操作如下: 1.打开阿里云控制台,没有的可以用淘宝账号或 ...
- 多线程编程(Linux C)
多线程编程可以说每个程序员的基本功,同时也是开发中的难点之一,本文以Linux C为例,讲述了线程的创建及常用的几种线程同步的方式,最后对多线程编程进行了总结与思考并给出代码示例. 一.创建线程 多线 ...
- Where is the clone one and how to extract it?
One cannot be in two places at once. Do you know what's "Dual Apps"? Manufactures like Xia ...
- Mybatis获取代理对象
mybatis-config.xml里标签可以放置多个environment,这里可以切换test和develop数据源 databaseIdProvider提供多种数据库,在xml映射文件里选择da ...
- 原 CNN--卷积神经网络从R-CNN到Faster R-CNN的理解(CIFAR10分类代码)
1. 什么是CNN 卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Netwo ...
- (2019版本可用)【idea的安装,激活,设置,卸载】
前言 也差不多也可以使用简单快捷的idea软件了,相对于elicpse而言的话,idea是非常好用的,虽然现在涉及不是很广. 什么是idea? IDEA 全称IntelliJ IDEA,是用于java ...
- 一个web前端开发者的日常唠叨
时间飞逝,距离上一次更新博客已经过去了三个月,上一篇博客的发布时间停留在了4月4日. 近来三个月没有更新博客,深感抱歉和愧疚.停更博客就意味着学习的越来越少,作为一个普通的前端开发者来说这是万万不可取 ...
- flink 1.7.2 安装详解
##flink 1.7.2 安装需要java环境 下载地址 https://flink.apache.org/downloads.html#1.单机版 #创建用户flinkuseradd flink ...
- Javascript实现简单地发布订阅模式
不论是在程序世界里还是现实生活中,发布—订阅模式的应用都非常广泛.我们先看一下现实中的例子. 小明最近看上了一套房子,到了售楼处之后才被告知,该楼盘的房子早已售罄.好在售楼MM告诉小明,不久后还有一些 ...
- Netty源码分析--内存模型(下)(十二)
这一节我们一起看下分配过程 PooledByteBuf<T> allocate(PoolThreadCache cache, int reqCapacity, int maxCapacit ...