Aizu - 2249

题意:国王本来有一个铺路计划,后来发现太贵了,决定删除计划中的某些边,但是有2个原则,1:所有的城市必须能达到。 2:城市与首都(1号城市)之间的最小距离不能变大。 并且在这2个原则下使得建路消耗最小。

题解:现在来分析一下,使得n个点联通至少需要n-1条路,然后因为求最小消耗,所以路最多也就只有n-1条,除了首都以外,每一个都市都对应着一条路,我们只需要在dijkstra求最短路的时候,每次更新最短路的距离就更新这个点所对应的边,最后每个城市的点对应的边就是符合要求的边,最后求和一下就是答案了。

 #include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<functional>
using namespace std;
#define ll long long
typedef pair<int, int> pll;
const int INF = 0x3f3f3f3f;
const int N = +;
struct Node
{
int nt, to, d, c;
}Edge[N*];
int head[N], dis[N], pre[N];
int cnt = , n, m;
void add(int u, int v, int d, int c)
{
Edge[cnt].to = v;
Edge[cnt].d = d;
Edge[cnt].c = c;
Edge[cnt].nt = head[u];
head[u] = cnt++;
}
void dijkstra()
{
memset(dis, INF, sizeof(dis));
dis[] = ;
priority_queue<pll, vector<pll>, greater<pll> > q;
q.push(pll(,));
while(!q.empty())
{
int u = q.top().second, d = q.top().first;
q.pop();
if(dis[u] != d) continue;
for(int i = head[u]; ~i; i = Edge[i].nt)
{
int v = Edge[i].to;
if(dis[v] > dis[u] + Edge[i].d)
{
dis[v] = dis[u] + Edge[i].d;
pre[v] = i;
q.push(pll(dis[v],v));
}
else if(dis[v] == dis[u]+Edge[i].d && Edge[i].c < Edge[pre[v]].c)
{
pre[v] = i;
q.push(pll(dis[v],v));
}
}
}
}
int main()
{
ios::sync_with_stdio(false);
cin.tie();
cout.tie();
while(cin >> n >> m, n+m)
{
memset(head, -, sizeof(head));
cnt = ;
int x, y, d, c;
for(int i = ; i < m; i++)
{
cin >> x >> y >> d >> c;
add(x,y,d,c);
add(y,x,d,c);
}
dijkstra();
ll ans = ;
for(int i = ; i <= n; i++)
{
ans += Edge[pre[i]].c;
}
cout << ans << endl;
}
return ;
}

Aizu-2249 Road Construction(dijkstra求最短路)的更多相关文章

  1. Aizu - 2249 Road Construction

    题目:给出若干个建筑之间的一些路,每条路都有对应的长度和需要的花费,问在保证源点1到其他个点的距离最短的情况下,最少的花费是多少/ 思路:和一般的最短路问题相比,多了一个 数组id[i],用来记录到达 ...

  2. 关于dijkstra求最短路(模板)

    嗯....   dijkstra是求最短路的一种算法(废话,思维含量较低,   并且时间复杂度较为稳定,为O(n^2),   但是注意:!!!!         不能处理边权为负的情况(但SPFA可以 ...

  3. ACM - 最短路 - AcWing 849 Dijkstra求最短路 I

    AcWing 849 Dijkstra求最短路 I 题解 以此题为例介绍一下图论中的最短路算法.先让我们考虑以下问题: 给定一个 \(n\) 个点 \(m\) 条边的有向图(无向图),图中可能存在重边 ...

  4. AOJ 2249 Road Construction (dijkstra)

    某国王需要修路,王国有一个首都和多个城市,需要修路.已经有修路计划了,但是修路费用太高. 为了减少修路费用,国王决定从计划中去掉一些路,但是需要满足一下两点: 保证所有城市都能连通 所有城市到首都的最 ...

  5. AOJ 2249 Road Construction(Dijkstra+优先队列)

    [题目大意] http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2249 [题目大意] 一张无向图,建造每条道路需要的费用已经给出, 现 ...

  6. 850. Dijkstra求最短路 II

    给定一个n个点m条边的有向图,图中可能存在重边和自环,所有边权均为正值. 请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出-1. 输入格式 第一行包含整数n和m. 接下来m行每行包 ...

  7. 849. Dijkstra求最短路 I

    给定一个n个点m条边的有向图,图中可能存在重边和自环,所有边权均为正值. 请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出-1. 输入格式 第一行包含整数n和m. 接下来m行每行包 ...

  8. POJ-2387(原始dijkstra求最短路)

    Til the Cows Come Home POJ-2387 这题是最简单的最短路求解题,主要就是使用dijkstra算法,时间复杂度是\(O(n^2)\). 需要注意的是,一定要看清楚题目的输入要 ...

  9. Dijkstra求次短路

    #10076.「一本通 3.2 练习 2」Roadblocks:https://loj.ac/problem/10076 解法: 次短路具有一种性质:次短路一定是由起点到点x的最短路 + x到y的距离 ...

随机推荐

  1. openGL基本概念

    OpenGL自身是一个巨大的状态机(State Machine):一系列的变量描述OpenGL此刻应当如何运行.OpenGL的状态通常被称为OpenGL上下文(Context).我们通常使用如下途径去 ...

  2. 【Laravel】 安装及常用的artisan命令

    composer Laravel 安装 cmd composer create-project laravel/laravel Laravel5 之后自动创建 常用的artisan命令 全局篇 查看a ...

  3. Xamarin 基础知识

    Xamarin 跨平台处理: C#: if (Device.OS == TargetPlatform.Android) { Code…… } else if (Device.OS == TargetP ...

  4. HTML之必备meta标签

    meta标签写在HTML的<head>中,推荐每个手机H5页面必加以下的代码: <head> <meta charset="UTF-8"> &l ...

  5. JVM类生命周期概述:加载时机与加载过程

    一个.java文件在编译后会形成相应的一个或多个Class文件,这些Class文件中描述了类的各种信息,并且它们最终都需要被加载到虚拟机中才能被运行和使用.事实上,虚拟机把描述类的数据从Class文件 ...

  6. if else 深度优化

    一. if else表达式过于复杂 if ((condition1 && condition2 ) || ((condition2 || condition3) && ...

  7. C#连接sqlserver分页查询的两个简单的方法

    /// <summary>        /// 分页查询函数        /// </summary>        /// <param name="co ...

  8. 盘一盘 AQS和ReentrantLock

    AQS是个啥? AQS(AbstractQueuedSynchronizer)是Java并发用来构建锁和其他同步组件的基础框架.许多同步类实现都依赖于它,如常用的ReentrantLock/Reent ...

  9. 源码编译OpenJdk 8,Netbeans调试Java原子类在JVM中的实现(Ubuntu 16.04)

    一.前言 前一阵子比较好奇,想看到底层(虚拟机.汇编)怎么实现的java 并发那块. volatile是在汇编里加了lock前缀,因为volatile可以通过查看JIT编译器的汇编代码来看. 但是原子 ...

  10. Unity进阶之ET网络游戏开发框架 08-深入登录成功消息

    版权申明: 本文原创首发于以下网站: 博客园『优梦创客』的空间:https://www.cnblogs.com/raymondking123 优梦创客的官方博客:https://91make.top ...