# GRADED FUNCTION: model

 def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.009,
num_epochs = 100, minibatch_size = 64, print_cost = True):
"""
Implements a three-layer ConvNet in Tensorflow:
CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED Arguments:
X_train -- training set, of shape (None, 64, 64, 3)
Y_train -- test set, of shape (None, n_y = 6)
X_test -- training set, of shape (None, 64, 64, 3)
Y_test -- test set, of shape (None, n_y = 6)
learning_rate -- learning rate of the optimization
num_epochs -- number of epochs of the optimization loop
minibatch_size -- size of a minibatch
print_cost -- True to print the cost every 100 epochs Returns:
train_accuracy -- real number, accuracy on the train set (X_train)
test_accuracy -- real number, testing accuracy on the test set (X_test)
parameters -- parameters learnt by the model. They can then be used to predict.
""" ops.reset_default_graph() # to be able to rerun the model without overwriting tf variables
tf.set_random_seed(1) # to keep results consistent (tensorflow seed)
seed = 3 # to keep results consistent (numpy seed)
(m, n_H0, n_W0, n_C0) = X_train.shape
n_y = Y_train.shape[1]
costs = [] # To keep track of the cost # Create Placeholders of the correct shape
### START CODE HERE ### (1 line)
X, Y = create_placeholders(n_H0, n_W0, n_C0, n_y)
### END CODE HERE ### # Initialize parameters
### START CODE HERE ### (1 line)
parameters = initialize_parameters() #初始化filter
### END CODE HERE ### # Forward propagation: Build the forward propagation in the tensorflow graph
### START CODE HERE ### (1 line)
Z3 = forward_propagation(X, parameters)
### END CODE HERE ### # Cost function: Add cost function to tensorflow graph
### START CODE HERE ### (1 line)
cost = compute_cost(Z3, Y) # softmax -> average cost
### END CODE HERE ### # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer that minimizes the cost.
### START CODE HERE ### (1 line)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
### END CODE HERE ### # Initialize all the variables globally
init = tf.global_variables_initializer() # Start the session to compute the tensorflow graph
with tf.Session() as sess: # Run the initialization
sess.run(init) # Do the training loop
for epoch in range(num_epochs): minibatch_cost = 0.
num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set
seed = seed + 1
minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed) for minibatch in minibatches: # Select a minibatch
(minibatch_X, minibatch_Y) = minibatch
# IMPORTANT: The line that runs the graph on a minibatch.
# Run the session to execute the optimizer and the cost, the feedict should contain a minibatch for (X,Y).
### START CODE HERE ### (1 line)
_ , temp_cost = sess.run([optimizer,cost], feed_dict={X: minibatch_X,Y: minibatch_Y})
### END CODE HERE ### minibatch_cost += temp_cost / num_minibatches # Print the cost every epoch
if print_cost == True and epoch % 5 == 0:
print ("Cost after epoch %i: %f" % (epoch, minibatch_cost))
if print_cost == True and epoch % 1 == 0:
costs.append(minibatch_cost) # plot the cost
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.title("Learning rate =" + str(learning_rate))
plt.show() # Calculate the correct predictions
predict_op = tf.argmax(Z3, 1)
correct_prediction = tf.equal(predict_op, tf.argmax(Y, 1)) # Calculate accuracy on the test set
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print(accuracy)
train_accuracy = accuracy.eval({X: X_train, Y: Y_train})
test_accuracy = accuracy.eval({X: X_test, Y: Y_test})
print("Train Accuracy:", train_accuracy)
print("Test Accuracy:", test_accuracy) return train_accuracy, test_accuracy, parameters

流程:placeholder for X and Y,    parameters(weight of conv layer) initialization,  forward_prop(X, parameters),  compute_cost(Z, Y), backprop optimizer, global_variables.initializer, run init and optimizer, print the cost every epoch, caculate the crorrect predictions, caculate accuracy on the test set.

初始化:只需要初始conv layer的 weight,不用初始conv layer的 bias,不用初始fully connecyed layer的  weight 和 bias

完整版参见:https://www.cnblogs.com/CZiFan/p/9481110.html

Convolution model by吴恩达的更多相关文章

  1. 吴恩达深度学习第2课第2周编程作业 的坑(Optimization Methods)

    我python2.7, 做吴恩达深度学习第2课第2周编程作业 Optimization Methods 时有2个坑: 第一坑 需将辅助文件 opt_utils.py 的 nitialize_param ...

  2. 吴恩达课后作业学习1-week4-homework-multi-hidden-layer -2

    参考:https://blog.csdn.net/u013733326/article/details/79767169 希望大家直接到上面的网址去查看代码,下面是本人的笔记 实现多层神经网络 1.准 ...

  3. 吴恩达课后作业学习2-week1-1 初始化

    参考:https://blog.csdn.net/u013733326/article/details/79847918 希望大家直接到上面的网址去查看代码,下面是本人的笔记 初始化.正则化.梯度校验 ...

  4. 吴恩达课后作业学习2-week1-2正则化

    参考:https://blog.csdn.net/u013733326/article/details/79847918 希望大家直接到上面的网址去查看代码,下面是本人的笔记 4.正则化 1)加载数据 ...

  5. 【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第一周测验【中英】

    [吴恩达课后测验]Course 1 - 神经网络和深度学习 - 第一周测验[中英] 第一周测验 - 深度学习简介 和“AI是新电力”相类似的说法是什么? [  ]AI为我们的家庭和办公室的个人设备供电 ...

  6. 【Deeplearning.ai 】吴恩达深度学习笔记及课后作业目录

    吴恩达深度学习课程的课堂笔记以及课后作业 代码下载:https://github.com/douzujun/Deep-Learning-Coursera 吴恩达推荐笔记:https://mp.weix ...

  7. 我在 B 站学机器学习(Machine Learning)- 吴恩达(Andrew Ng)【中英双语】

    我在 B 站学机器学习(Machine Learning)- 吴恩达(Andrew Ng)[中英双语] 视频地址:https://www.bilibili.com/video/av9912938/ t ...

  8. 吴恩达深度学习第4课第3周编程作业 + PIL + Python3 + Anaconda环境 + Ubuntu + 导入PIL报错的解决

    问题描述: 做吴恩达深度学习第4课第3周编程作业时导入PIL包报错. 我的环境: 已经安装了Tensorflow GPU 版本 Python3 Anaconda 解决办法: 安装pillow模块,而不 ...

  9. 吴恩达深度学习第1课第4周-任意层人工神经网络(Artificial Neural Network,即ANN)(向量化)手写推导过程(我觉得已经很详细了)

    学习了吴恩达老师深度学习工程师第一门课,受益匪浅,尤其是吴老师所用的符号系统,准确且易区分. 遵循吴老师的符号系统,我对任意层神经网络模型进行了详细的推导,形成笔记. 有人说推导任意层MLP很容易,我 ...

随机推荐

  1. 命令用法习题,yum仓库的创建 chapter02 - 03 作业

    1.  分别用cat \tac\nl三个命令查看文件/etc/ssh/sshd_config文件中的内容,并用自己的话总计出这三个文档操作命令的不同之处? [root@localhost /]# ca ...

  2. 史上最全面的SignalR系列教程-1、认识SignalR

    SignalR 是什么? SignalR 是一个面向 ASP.NET 开发人员的库,可简化将实时 web 功能添加到应用程序的过程. 实时 web 功能是让服务器代码将内容推送到连接的客户端立即可用, ...

  3. Django:在OS X环境下连接MySQL数据库

    正常的安装只需要执行以下2条命令: $ brew install mysql-connector-c $ pip3 install mysqlclient 但在执行 pip3 install mysq ...

  4. HTML/CSS:div居中和div内部元素垂直居中(1)

    div居中 div水平和垂直居中,text-align和vertical-align不起作用,因为标签div没有这两个属性,所以再css中设置这两个值不能居中的效果 1. div水平居中:设置marg ...

  5. ccf 201809-4 再卖菜

    这题一开始不知道剪枝这种操作,只会傻傻地dfs. 然后dfs递归写80分超时,非递归写70分超时(纳尼?我一直以为非递归算法在时间上会更优秀一些,为什么会这样?!!) 剪一下枝就都能过了 #inclu ...

  6. springmvc异步处理

    好久没有写过博客了,都是看大牛的文章,略过~~ 突然感觉成长在于总结!废话不多说,开干 由于是公司项目,所以不方便给出代码,看图操作 在项目util目录下创建工具类TaskExecutorConfig ...

  7. Appium+python自动化(三十)- 实现代码与数据分离 - 数据配置-yaml(超详解)

    简介 本篇文章主要介绍了python中yaml配置文件模块的使用让其完成数据和代码的分离,宏哥觉得挺不错的,于是就义无反顾地分享给大家,也给大家做个参考.一起跟随宏哥过来看看吧. 思考问题 前面我们配 ...

  8. 不得不会的10点Java基础知识

    1.实例变量和类变量 实例变量:指每个对象独立的,修改其中一个对象的实例变量,不会影响其他实例变量的值,变量值无 static 关键字修饰: 类变量:是指所有对象共享的,其中一个对象把该变量的值修改了 ...

  9. Docker入门-搭建docker私有仓库

    Docker Hub 目前Docker官方维护了一个公共仓库Docker Hub,其中已经包括了数量超过15000个镜像.大部分需求都可以通过在Docker Hub中直接下载镜像来使用. 注册登录 可 ...

  10. appiumstudio工具-----实现windows上安卓、IOS自动化测试

    博主用的是win10,用python+appium做完安卓的自动化第一个版本后,大量地搜索windows上做IOS自动化的解决办法,有的建议用虚拟机,安装苹果的系统,没有实践过,据说效果不很好.然后, ...