bzoj1854 游戏题解(二分图/并查集)
1854: [Scoi2010]游戏
Time Limit: 5 Sec Memory Limit: 162 MB
Submit: 5547 Solved: 2229
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
1 2
3 2
4 5
Sample Output
HINT
【数据范围】
对于30%的数据,保证N < =1000
对于100%的数据,保证N < =1000000
Source
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#include<cmath>
#include<map>
#include<vector>
#define N 1000005
using namespace std;
int n,zz,a[N];
struct ro
{
int to,next;
}road[N*];
void build(int x,int y)
{
zz++;
road[zz].to=y;
road[zz].next=a[x];
a[x]=zz;
}
int b[N];
bool fw[N],fw2[N];
bool find(int x)
{
for(int i=a[x];i>;i=road[i].next)
{
int y=road[i].to;
if(!fw[y])
{
fw[y]=;
if(!b[y])
{
b[y]=x;
return ;
}
}
}
for(int i=a[x];i>;i=road[i].next)
{
int y=road[i].to;
if(!fw2[y])
{
fw2[y]=;
if(find(b[y]))
{
b[y]=x;
return ;
}
}
}
return ;
}
int js[N];
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
js[x]++,js[y]++;
build(x,i);
build(y,i);
}
int ans=;
for(int i=;i<=min(n,);i++)
{
if(!js[i])break;
memset(fw,,sizeof(fw));
memset(fw2,,sizeof(fw2));
if(find(i))ans++;
else break;
}
printf("%d\n",ans);
return ;
}
二分图代码
下面我来说一下正解:并查集。
当时在思考时并不是没想到过并查集,但如何去保证递增这个条件没想出来,然后就放弃这个思路了。合并那些并查集十分好说,毕竟怎么搞也只能从武器的两个权值做文章那如何保证递增呢?
首先我们明确一个性质当当前连通块是一个树时,如果我们再去加一个边这个图中一定有一个环,而如果所有边都是双向边,我们可以满足每一个点都可以和一个与之相连的边配对且所有边不重复。
那么当我们在并查集合并的时候,我们可以分类讨论,如果说两个节点所属同一个并查集,那么这个并查集里所有的点都可以被满足,如果两个点属于不同并查集,那么我们根据递增的要求,首先看编号小的并查集是否已经被满足,若被满足我们就去满足大的,否则就去满足小的就好了。在合并时我们应当把大的作为小的的fa,否则我们每次满足的标记都只能打给最小的,无法真正更新答案。
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#include<cmath>
#include<map>
#include<vector>
#define N 1000005
using namespace std;
int n,fa[N];
bool vi[N];
int find(int x)
{
if(fa[x]==x) return x;
return fa[x]=find(fa[x]);
}
void hb(int x,int y)
{
int a=find(x),b=find(y);
if(a>b)swap(a,b);
if(a==b) vi[a]=;
else
{
if(!vi[a]) vi[a]=;
else vi[b]=;
fa[a]=b;
}
}
int main()
{
scanf("%d",&n);
for(int i=;i<=;i++)
fa[i]=i;
for(int i=;i<=n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
hb(x,y);
}
for(int i=;i<=;i++)
{
if(!vi[i])
{
printf("%d\n",i-);
break;
}
}
return ;
}
并查集打法
bzoj1854 游戏题解(二分图/并查集)的更多相关文章
- bzoj1854 [Scoi2010]游戏【构图 并查集】
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1854 没想到怎么做真是不应该,看到每个武器都有两个属性,应该要想到连边构图的!太不应该了! ...
- Cogs 1070. [焦作一中2012] 玻璃球游戏 带权并查集,逆序处理
题目: http://cojs.tk/cogs/problem/problem.php?pid=1070 1070. [焦作一中2012] 玻璃球游戏 ★ 输入文件:marbles.in 输出 ...
- 【BZOJ1594】[Usaco2008 Jan]猜数游戏 二分答案+并查集
[BZOJ1594][Usaco2008 Jan]猜数游戏 Description 为了提高自己低得可怜的智商,奶牛们设计了一个新的猜数游戏,来锻炼她们的逻辑推理能力. 游戏开始前,一头指定的奶牛会在 ...
- AcWing 239.奇偶游戏 (带权并查集/种类并查集)
题意:你和朋友玩游戏,有个一\(01\)序列,你每次给出一个区间,朋友会回答这个区间中的\(1\)的个数是奇数还是偶数,但是你亲爱的朋友可能在撒谎,问在哪个询问你能确定你的朋友在撒谎,输出回合数. 题 ...
- bzoj3376/poj1988[Usaco2004 Open]Cube Stacking 方块游戏 — 带权并查集
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3376 题目大意: 编号为1到n的n(1≤n≤30000)个方块正放在地上.每个构成一个立方 ...
- 【BZOJ5005】乒乓游戏 [线段树][并查集]
乒乓游戏 Time Limit: 10 Sec Memory Limit: 256 MB Description Input Output Sample Input 5 1 1 5 1 5 11 2 ...
- 洛谷P5092 [USACO2004OPEN]Cube Stacking 方块游戏 (带权并查集)
题目描述 约翰和贝茜在玩一个方块游戏.编号为 1\ldots n 1-n 的 n n ( 1 \leq n \leq 30000 1≤n≤30000 )个方块正放在地上,每个构成一个立方柱. 游戏开始 ...
- CDOJ 1070 秋实大哥打游戏 带权并查集
链接 F - 秋实大哥打游戏 Time Limit:1000MS Memory Limit:65535KB 64bit IO Format:%lld & %llu Submit ...
- 【BZOJ 3376】[Usaco2004 Open]Cube Stacking 方块游戏 带权并查集
这道题一开始以为是平衡树结果发现复杂度过不去,然后发现我们一直合并而且只是记录到最低的距离,那么就是带权并查集了,带权并查集的权一般是到根的距离,因为不算根要好打,不过还有一些其他的,具体的具体打. ...
随机推荐
- 手把手教你学会 基于JWT的单点登录
最近我们组要给负责的一个管理系统 A 集成另外一个系统 B,为了让用户使用更加便捷,避免多个系统重复登录,希望能够达到这样的效果--用户只需登录一次就能够在这两个系统中进行操作.很明显这就是单点登 ...
- 百度官方wormHole后门检测记录
乌云地址:http://drops.wooyun.org/papers/10061 后门端口:40310/6259 本次测试在Ubuntu下,具体adb调试工具参考 sink_cup的博客 http: ...
- 腾讯QQ 8.9.3体验版发布 在线文档多端同步实时保存
感谢N软网的投递 腾讯体验中心迎来QQ8.9.3首个维护体验版发布,详细版本号为v8.9.3.21006,上一个体验版v8.9.2.20717发布于4月20日,时隔34天又迎来了更新.本次升级主要是在 ...
- RESTful API设计原则与规范
RESTful API设计原则与规范 一.背景与基础概念 2 二.RESTful API应遵循的原则 3 1.协议(Protocol) 3 2.域名(ROOT URL) 3 3.版本(Versioni ...
- DUI-分层窗口两种模式(SetLayeredWindowAttributes和UpdateLayeredWindow两种方法各有利弊)
LayeredWindow提供两种模式: 1.使用SetLayeredWindowAttributes去设置透明度, 完成窗口的统一透明,此时窗口仍然收到PAINT消息, 其他应用跟普通窗口一样. 2 ...
- 关于这次KPL春季决赛的感悟
QG 4:0 横扫AG超玩会,关于这一点想写一些自己的感悟,AG超玩会一直都是 4:0 横扫别人,这次在冠军赛被别人横扫,一点喘息的机会都没有. 1.QGhappy 跟本没把AG超玩会放在眼里,很 ...
- vi,etc目录文件,环境变量,别名功能
1 vi命令使用技巧补充 1.1 如何快速编辑文本内容 yy ---快速复制文件内容 3yy ---复制三行内容 p ---快速粘贴文本内容 3p ---粘贴三行内容 dd ---快速删除文件内容 ...
- Ace-Admin框架-首页(一)
ACE-Admin是一个强大的后台模板框架,看起来非常漂亮,但是每个页面内容太多,看起来不知道怎么修改,现在来对首页进行主要内容改装,将不需要的内容都给删除,然后就只剩下一个框架,在开发中,我们就完全 ...
- 解决IE8placeholder属性问题
<!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...
- PATB 1041 考试座位号(15)
#include <cstdio> #include <iostream> using namespace std; struct student{ char str[15]; ...