关于gcd的四道题
T1:
题目描述:
给定一个n求\(\sum\limits_{i=1}^ngcd(i,n)\)
因为n太大,所以O(n)的做法肯定不行,然后就去想根号的方法。
\]
\]
\]
\]
\]
然后i从1到\(\sqrt{n}\)去枚举n的因数,然后将i*φ(n/i)与n/i与φ(i)全部计入答案,就可以做到\(\sqrt{n}*\sqrt{n}\)的复杂度,因为第二个根号是求欧拉函数的复杂度,所以实际的复杂度没有这么高
代码:
#include<cstdio>
#include<iostream>
using namespace std;
typedef long long ll;
ll phi(ll x)
{
ll ans=1;
for(ll i=2;i*i<=x;++i)
{
if(x%i==0)
{
ans*=(i-1);
x/=i;
}
while(x%i==0)
{
ans*=i;
x/=i;
}
}
if(x!=1)
ans*=(x-1);
return ans;
}
int main()
{
ios::sync_with_stdio(false);
ll n;
cin>>n;
ll ans=0;
ll i;
for(i=1;i*i<=n;++i)
if(n%i==0)
ans+=i*phi(n/i)+(n/i)*phi(i);
if(i*i==n) ans-=i*phi(i);
cout<<ans;
return 0;
}
T2:
exbzoj2705:
没有评测,
题目描述:
给定一个整数n(1<=n<=100000),你需要求出\(\sum\limits_{i=1}^n\sum\limits_{j=1}^igcd(i,j)\)
暴力做法:将上个题中的n循环起来,最后记录每个循环所求的和。明显TLE
正解:
\]
枚举因数k
\]
考虑所有最大公因数为k的情况,设\(i=ak,j=bk(a>=b)\)若要i与j做大公约数为k,则必须满足gcd(a,b)=1,满足此条件的所有情况数为φ(b),然后考虑b的取值范围,因为必须满足b*k<=n,所以\(b<=[\frac{n}{k}]\)。所以答案为
\]
所以线性求出欧拉函数,并求出前缀和即可。
代码:
#include<cstdio>
#include<iostream>
using namespace std;
const int N=100000+100;
int phi[N],phi_sum[N];
void getphi()
{
for(int i=1;i<N;++i)
phi[i]=i;
phi[1]=1;
for(int i=2;i<N;++i)
if(phi[i]==i)
for(int j=i;j<=N;j+=i)
phi[j]=phi[j]/i*(i-1);
for(int i=1;i<N;++i)
phi_sum[i]=phi_sum[i-1]+phi[i];
}
int n;
int main()
{
getphi();
while(1)
{
scanf("%d",&n);
if(!n) break;
long long ans=0;
for(int i=1;i<=n;++i)
ans+=phi_sum[n/i]*i;
cout<<ans<<endl;
}
return 0;
}
T3:
别问我为什么是luogu
题目描述:
给定一个整数n(1<=n<=100000),求\(\sum\limits_{i=1}^{n-1}\sum\limits_{j=i+1}^ngcd(i,j)\)
解法:
\]
枚举因数k
\]
考虑所有最大公因数为k的情况,设\(i=ak,j=bk(b>a)\)若要i与j做大公约数为k,则必须满足gcd(a,b)=1,满足此条件的所有情况数为φ(b),然后考虑b的取值范围,因为必须满足b*k<=n,所以\(b<=[\frac{n}{k}]\)。所以答案为
\]
所以线性求出欧拉函数,并求出前缀和即可。
为什么和上面一样
但是因为i和j都不能为0并且j>i即b>a,所以b不能为1,所以要在最后减去φ(1)的情况,也就相当于把里面的i从2开始枚举。
所以最终答案为
\]
代码:
#include<cstdio>
#include<iostream>
using namespace std;
const int N=100000+100;
int phi[N],phi_sum[N];
void getphi()
{
for(int i=1;i<N;++i)
phi[i]=i;
phi[1]=1;
for(int i=2;i<N;++i)
if(phi[i]==i)
for(int j=i;j<=N;j+=i)
phi[j]=phi[j]/i*(i-1);
for(int i=1;i<N;++i)
phi_sum[i]=phi_sum[i-1]+phi[i];
}
int n;
int main()
{
getphi();
while(1)
{
scanf("%d",&n);
if(!n) break;
long long ans=0;
for(int i=1;i<=n;++i)
ans+=(phi_sum[n/i]-1)*i;
cout<<ans<<endl;
}
return 0;
}
T4:
题目描述:
给定一个n(1<=n<=100000),求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^ngcd(i,j)\)
解法:
发现这个题数上面两个题的综合,所以,嘿嘿,将上面的两个题答案加起来即可,所以最终答案为
\]
代码:
#include<cstdio>
#include<iostream>
using namespace std;
typedef long long ll;
const int N=100000+100;
ll ans,phi[N],phi_sum[N],n;
void getphi()
{
for(int i=1;i<N;++i)
phi[i]=i;
phi[1]=1;
for(int i=2;i<N;++i)
if(phi[i]==i)
for(int j=i;j<=N;j+=i)
phi[j]=phi[j]/i*(i-1);
for(int i=1;i<N;++i)
phi_sum[i]=phi_sum[i-1]+phi[i];
}
int main()
{
cin>>n;
getphi();
for(int i=1;i<=n;++i)
ans+=(phi_sum[n/i]*2-1)*i;
cout<<ans;
return 0;
}
关于gcd的四道题的更多相关文章
- DDCTF2019 的四道题wp
MIsc:流量分析 这道题,在比赛的时候就差个key了,但是没想到要改高度,后来群里师傅说了下,就再试试, 导出来改高度. 导出来,把 把%5c(4)前面的hex删掉,改成png,就直接拿去那个img ...
- lintcode中等题目的四道题
第一题: 第一句先创建了一个解决问题的类, 第二句声明了一个公共接口的整形链表里面有N个整形数, 第三句给链表动态初始化, 第四步判断链表里的数有没有,如果N<=0则返回结果0,否则执行Prin ...
- 深入GCD(四):使用串行队列实现简单的预加载
其主要思路是使用gcd创建串行队列,然后在此队列中先后执行两个任务:1.预加载一个viewController 2.将这个viewController推入代码如下:@implementation DW ...
- lintcode 四道题
我们考虑对每个字符进行两边扩展,寻找回文串,并记录长度.有两种情况,一种是bab,从a向两边扩展,一种abba,从bb中间向两边扩展. dp[i][j] 表示子串s[i-j]是否是回文 初始化:dp[ ...
- google Kickstart Round F 2017 四道题题解
Problem A. Kicksort 题意抽象一下为: 对于一个每次都从数列正中间取划分数的快速排序,给定一个1-n的排列,问快排的复杂度对于这个排列是否会退化为最坏复杂度. 数据范围: 测试组数1 ...
- GCD 学习(四) dispatch_group
如果想在dispatch_queue中所有的任务执行完成后在做某种操作,在串行队列中,可以把该操作放到最后一个任务执行完成后继续,但是在并行队列中怎么做呢.这就有dispatch_group 成组操作 ...
- GCD 扫盲篇
GCD有四个概念:串行队列.并行队列.同步.异步四者. 如下简介: 这里不仅给出了不确定性,而且也给出了确定性.对于初学者而言,有时候因为那些不确定的东西所造成的疑问会像没有闸却在疾驰的汽车一样让人惊 ...
- NOIP2012普及组 (四年后的)解题报告 -SilverN
本章施工仍未完成 现在的时间是3.17 0:28,我困得要死 本来今天(昨天?)晚上的计划是把整个四道题的题解写出来,但是到现在还没写完T4的高效算法,简直悲伤. 尝试了用floyd写T4,终于大功告 ...
- ACM第四次积分赛
虽然因为第一题给的数据有问题,没能四道题都做出来,但是这次第四名,进步很大,继续努力! SAU-ACM总比赛成绩 姓名 账号 上学期成绩 第一次成绩 第二次成绩 第三次成绩 第四 ...
随机推荐
- Myeclipse10.7添加本地插件方法
-
- 学习day01
1.web C/S:Client Server 客户端 服务器 QQ,... B/S:Browser Server 浏览器 服务器 PC机:Personal Computer 个人电脑 2.HTML ...
- [20190419]shared latch spin count.txt
[20190419]shared latch spin count.txt --//昨天测试exclusive latch spin count = 20000(缺省).--//今天测试shared ...
- SQL Server数据库————增删改查
--增删改查--增 insert into 表名(列名) value(值列表) --删 delect from 表名 where 条件 --改 update 表名 set 列名=值1,列名2=值2 w ...
- easyui实现分页
主要参考官方的文档,欢迎评论 1.集成easyui,下面是我的引入方式,我引入到了head.html 每次只要引入该页面就可以了. <!-- easyui样式支持 --><link ...
- Docker容器镜像删除
好吧,本来认为删除镜像是一件很容易的事情,但刚开始上手,还是有点百思不得其解.删着删着,发现果然很容易.分享下本人的心得: 分两种情况:那么要删除镜像,首先得删除容器,删除容器时,确保容器已停止运行: ...
- LeetCode算法题-Shortest Completing Word(Java实现)
这是悦乐书的第309次更新,第330篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第178题(顺位题号是748).从给定的字典单词中查找最小长度单词,其中包含字符串lic ...
- Hexo server报错TypeError: Cannot read property 'utcOffset' of null解决方法
最近刚刚开始使用Hexo,新建了一篇article,运行hexo server时候总是报错Cannot read property 'offset' of null. 最后发现是因为手贱把_confi ...
- 在source中查看代码
如果你想查看网页的代码,有时会出现这种情况: o my god!啥都看不出来!这要怎么办?放弃吗,当然不啦! 点击这个神奇的按钮,奇迹发生了! 瞬间变成这个样子,哇,好激动!
- EntityFramework 6.x和EntityFramework Core关系映射中导航属性必须是public?
前言 不知我们是否思考过一个问题,在关系映射中对于导航属性的访问修饰符是否一定必须为public呢?如果从未想过这个问题,那么我们接下来来探讨这个问题. EF 6.x和EF Core 何种情况下必须配 ...