BZOJ 4614 【Wf2016】 Oil
题目链接:Oil
感觉同时几线作战有点吃不消啊……
这道题有一个显然的结论,那就是最优的直线一定过某条线段的端点。
仔细想想很有道理。如果最终的直线没有过线段的端点的话,那么这条直线就一定可以平移,直到过端点为止。
于是我们可以枚举直线上的一个点,由于直线不能与线段平行,那么与枚举的点纵坐标不同的线段就对应着一个斜率区间。于是这个问题就转化成了一个经典问题:有$n$个区间,第$i$个区间$[l_i,r_i]$会给区间内的所有位置(可以不是整数)加上一个权值$c_i$,求最后所有位置中最大的权值。这个问题解法很简单,就是把每个区间拆成两个点,然后从左往右扫,扫到左端点就加上权值,扫到右端点就减去权值,取个$\max$即可。
还有一点小优化:枚举点的时候不必枚举所有端点,可以只枚举所有左端点(或者右端点)。因为如果最终的直线不过任何线段的左端点的话,那么一定可往左平移到过一个左端点为止。
还有计算斜率的时候由于可能会有斜率不存在的情况,可以把斜率式中的$x$、$y$互换一下,方便计算。
下面贴代码(自带巨大常数):
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define N 2010
#define eps (1e-8) using namespace std;
typedef double llg; struct data{
int x,y;
}l[N],r[N],a[N];
struct dato{
llg l,r;int c;
}s[N],sl[N],sr[N];
int n,ans,ls,ld;
llg d[N<<1]; bool cmpl(dato a,dato b){return a.l<b.l;}
bool cmpr(dato a,dato b){return a.r<b.r;} int main(){
File("a");
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d %d %d",&l[i].x,&r[i].x,&r[i].y); l[i].y=r[i].y;
if(l[i].x>r[i].x) swap(l[i],r[i]); a[i]=l[i];
d[++ld]=l[i].x,d[++ld]=r[i].x;
ans=max(ans,r[i].x-l[i].x);
}
for(int i=1,id,now;i<=n;i++){
ls=ld=0; id=(i-1)%n+1;
for(int j=1;j<=n;j++)
if(l[j].y!=a[i].y){
ls++; s[ls].c=r[j].x-l[j].x;
s[ls].l=(llg)(l[j].x-a[i].x)/(llg)(l[j].y-a[i].y);
s[ls].r=(llg)(r[j].x-a[i].x)/(llg)(r[j].y-a[i].y);
if(s[ls].l>s[ls].r) swap(s[ls].l,s[ls].r);
}
if(ls){
now=r[id].x-l[id].x;
for(int i=1;i<=ls;i++) d[++ld]=s[i].l,d[++ld]=s[i].r,sl[i]=sr[i]=s[i];
sort(d+1,d+ld+1); ld=unique(d+1,d+ld+1)-d-1;
sort(sl+1,sl+ls+1,cmpl); sort(sr+1,sr+ls+1,cmpr);
for(int i=1,zl=1,zr=1;i<=ld;i++){
while(zl<=ls && d[i]==sl[zl].l) now+=sl[zl++].c;
ans=max(ans,now);
while(zr<=ls && d[i]==sr[zr].r) now-=sr[zr++].c;
}
}
}
printf("%d",ans);
return 0;
}
BZOJ 4614 【Wf2016】 Oil的更多相关文章
- BZOJ 1854 【Scoi2010】 游戏
Description lxhgww最近迷上了一款游戏,在游戏里,他拥有很多的装备,每种装备都有2个属性,这些属性的值用[1,10000]之间的数表示.当他使用某种装备时,他只能使用该装备的某一个属性 ...
- BZOJ 1303 【CQOI2009】中位数图
baidu了一下bzoj水题列表...找到这道题. 题目大意:给定一个数t,在给定的一段包含1-n的序列中找出多少个长度为奇数子序列的中位数为t. 第一眼没看数据范围,于是开心的打了一个O(n^3 ...
- 【BZOJ】【1177】【APIO2009】Oil
DP 找出三个正方形,可以转化为将整个油田切成三个矩形块,每块中各找一个正方形区域,切的形式只有6种,分类更新ans即可 题解:http://trinklee.blog.163.com/blog/st ...
- BZOJ 1853 【Scoi2010】 幸运数字
Description 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认 为,于是他定义自己的"幸运号码"是十进制表示中只包含数字6和8的那些号码,比如68,666,8 ...
- BZOJ 1026 【SCOI2009】 windy数
Description windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B,总共有多少个windy数? I ...
- BZOJ 3669 【NOI2014】 魔法森林
Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...
- UOJ#58/BZOJ 3052【WC2013】糖果公园
好写好调的莫队算法,就算上树了仍然好写好调. 传送门 http://uoj.ac/problem/58 简要做法 将树按照dfs序分块,然后将询问按照(u所在块,v所在块,时间)作为关键字进行排序,依 ...
- 洛谷 P2634 BZOJ 2152 【模板】点分治(聪聪可可)
题目描述 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已 ...
- BZOJ 1096 【ZJOI2007】 仓库建设
Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天, ...
随机推荐
- Vertica数据库常用管理命令汇总
1.查询数据库是否有等待 select * from resource_queues where node_name=(select node_name from nodes order by nod ...
- php内核分析(五)-zval
这里阅读的php版本为PHP-7.1.0 RC3,阅读代码的平台为linux 实际上,从这个函数开始,就已经进入到了zend引擎的范围了. zend_eval_string_ex(exec_direc ...
- Entity Framework实现多列排序
aList.OrderBy(a => a.WIndex).ThenBy(a=>a.KIndex) 类似sql:order by WIndex,KIndex
- EntityFramework中的DbContext使用疑点说明
1.DbContext怎么在Asp.mvc中使用? public class Repository { //实例化EF容器:有弊端.一个线程里可能会创建多个DbContext //DbContext ...
- ASP.NET五步打包下载Zip文件
本文版权归博客园和作者吴双共同所有,转载和爬虫请注明原文地址:www.cnblogs.com/tdws 首先分享几个振奋人心的新闻: 1.谷歌已经宣布加入.NET基金会 2.微软加入Linux基金会, ...
- C#开发微信门户及应用(35)--微信支付之企业付款封装操作
在前面几篇随笔,都是介绍微信支付及红包相关的内容,其实支付部分的内容还有很多,例如企业付款.公众号支付或刷卡支付.摇一摇红包.代金券等方面的内容,这些都是微信接口支持的内容,本篇继续微信支付这一主题, ...
- The method getJspApplicationContext(ServletContext) is undefined for the type JspFactory
The method getJspApplicationContext(ServletContext) is undefined for the type JspFactory 这是由于项目里面的一些 ...
- stm32新建工程详细步骤
记得好早以前为了建一个keil的工程折腾了好久,在这里写写基本的Keil工程创建方法,以防自己以后再忘记: 新建工程 保存工程 选择器件 在这边新建文件夹,然后就是添加程序代码到里面去了.其中一些文件 ...
- 认识Git
---恢复内容开始--- Git是一款免费.开源的分布式版本控制系统,用于敏捷高效地处理任何或小或大的项目. Git作为当下最潮流的版本控制工具也是有他独特的不同,最大的不同就在于他有分布式版本管理的 ...
- JS高程4.变量,作用域和内存问题(1)
1.基本类型和应用类型的值 ECMAScript变量可能包含两种不同数据类型的值: 基本类型值--简单的数据段.(5种基本的数据类型,按值访问,因为可以操作保存在变量中的实际的值.) 引用类型值--多 ...