题目链接:Oil

  感觉同时几线作战有点吃不消啊……

  这道题有一个显然的结论,那就是最优的直线一定过某条线段的端点。

  仔细想想很有道理。如果最终的直线没有过线段的端点的话,那么这条直线就一定可以平移,直到过端点为止。

  于是我们可以枚举直线上的一个点,由于直线不能与线段平行,那么与枚举的点纵坐标不同的线段就对应着一个斜率区间。于是这个问题就转化成了一个经典问题:有$n$个区间,第$i$个区间$[l_i,r_i]$会给区间内的所有位置(可以不是整数)加上一个权值$c_i$,求最后所有位置中最大的权值。这个问题解法很简单,就是把每个区间拆成两个点,然后从左往右扫,扫到左端点就加上权值,扫到右端点就减去权值,取个$\max$即可。

  还有一点小优化:枚举点的时候不必枚举所有端点,可以只枚举所有左端点(或者右端点)。因为如果最终的直线不过任何线段的左端点的话,那么一定可往左平移到过一个左端点为止。

  还有计算斜率的时候由于可能会有斜率不存在的情况,可以把斜率式中的$x$、$y$互换一下,方便计算。

  下面贴代码(自带巨大常数):

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define N 2010
#define eps (1e-8) using namespace std;
typedef double llg; struct data{
int x,y;
}l[N],r[N],a[N];
struct dato{
llg l,r;int c;
}s[N],sl[N],sr[N];
int n,ans,ls,ld;
llg d[N<<1]; bool cmpl(dato a,dato b){return a.l<b.l;}
bool cmpr(dato a,dato b){return a.r<b.r;} int main(){
File("a");
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d %d %d",&l[i].x,&r[i].x,&r[i].y); l[i].y=r[i].y;
if(l[i].x>r[i].x) swap(l[i],r[i]); a[i]=l[i];
d[++ld]=l[i].x,d[++ld]=r[i].x;
ans=max(ans,r[i].x-l[i].x);
}
for(int i=1,id,now;i<=n;i++){
ls=ld=0; id=(i-1)%n+1;
for(int j=1;j<=n;j++)
if(l[j].y!=a[i].y){
ls++; s[ls].c=r[j].x-l[j].x;
s[ls].l=(llg)(l[j].x-a[i].x)/(llg)(l[j].y-a[i].y);
s[ls].r=(llg)(r[j].x-a[i].x)/(llg)(r[j].y-a[i].y);
if(s[ls].l>s[ls].r) swap(s[ls].l,s[ls].r);
}
if(ls){
now=r[id].x-l[id].x;
for(int i=1;i<=ls;i++) d[++ld]=s[i].l,d[++ld]=s[i].r,sl[i]=sr[i]=s[i];
sort(d+1,d+ld+1); ld=unique(d+1,d+ld+1)-d-1;
sort(sl+1,sl+ls+1,cmpl); sort(sr+1,sr+ls+1,cmpr);
for(int i=1,zl=1,zr=1;i<=ld;i++){
while(zl<=ls && d[i]==sl[zl].l) now+=sl[zl++].c;
ans=max(ans,now);
while(zr<=ls && d[i]==sr[zr].r) now-=sr[zr++].c;
}
}
}
printf("%d",ans);
return 0;
}

BZOJ 4614 【Wf2016】 Oil的更多相关文章

  1. BZOJ 1854 【Scoi2010】 游戏

    Description lxhgww最近迷上了一款游戏,在游戏里,他拥有很多的装备,每种装备都有2个属性,这些属性的值用[1,10000]之间的数表示.当他使用某种装备时,他只能使用该装备的某一个属性 ...

  2. BZOJ 1303 【CQOI2009】中位数图

    baidu了一下bzoj水题列表...找到这道题.   题目大意:给定一个数t,在给定的一段包含1-n的序列中找出多少个长度为奇数子序列的中位数为t. 第一眼没看数据范围,于是开心的打了一个O(n^3 ...

  3. 【BZOJ】【1177】【APIO2009】Oil

    DP 找出三个正方形,可以转化为将整个油田切成三个矩形块,每块中各找一个正方形区域,切的形式只有6种,分类更新ans即可 题解:http://trinklee.blog.163.com/blog/st ...

  4. BZOJ 1853 【Scoi2010】 幸运数字

    Description 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认 为,于是他定义自己的"幸运号码"是十进制表示中只包含数字6和8的那些号码,比如68,666,8 ...

  5. BZOJ 1026 【SCOI2009】 windy数

    Description windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B,总共有多少个windy数? I ...

  6. BZOJ 3669 【NOI2014】 魔法森林

    Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节 ...

  7. UOJ#58/BZOJ 3052【WC2013】糖果公园

    好写好调的莫队算法,就算上树了仍然好写好调. 传送门 http://uoj.ac/problem/58 简要做法 将树按照dfs序分块,然后将询问按照(u所在块,v所在块,时间)作为关键字进行排序,依 ...

  8. 洛谷 P2634 BZOJ 2152 【模板】点分治(聪聪可可)

    题目描述 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已 ...

  9. BZOJ 1096 【ZJOI2007】 仓库建设

    Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天, ...

随机推荐

  1. SQL Server中提前找到隐式转换提升性能的办法

        http://www.cnblogs.com/shanksgao/p/4254942.html 高兄这篇文章很好的谈论了由于数据隐式转换造成执行计划不准确,从而造成了死锁.那如果在事情出现之前 ...

  2. JQuery中的工具函数总结

    前提引入 前提当然也是要引入Jquery啦... <script src="http://libs.baidu.com/jquery/1.9.0/jquery.js" typ ...

  3. 分布式系统理论基础 - 一致性、2PC和3PC

    引言 狭义的分布式系统指由网络连接的计算机系统,每个节点独立地承担计算或存储任务,节点间通过网络协同工作.广义的分布式系统是一个相对的概念,正如Leslie Lamport所说[1]: What is ...

  4. 3.C#WinForm基础累加器

    功能:实现累加计算. 知识点: bool int.TryParse(string s,out int result)(+1重载) 将数字的字符串形式转换为它的等效的32位有效的有符号整数,一个指示操作 ...

  5. DNS报文格式(RFC1035)

    一.域名和资源记录的定义 1.Name space definitions 2.资源记录定义(RR definitions)      2.1 格式          后面分析报文的时候详细解释.   ...

  6. 从架构层面谈web加载优化(个人整理)

    最近听了阿里一位大牛的讲座,讲web架构优化对网页加载的影响,看完之后对他所讲的一些优化方法进行一些总结和整理,发现收获还是蛮多的,下面多为个人整理和个人见解,希望有说的不对的,能及时指出 1.DNS ...

  7. ETL数据从sqlserver到mysql之间迁移

    因近期需要进行sqlserver数据到mysql之间的数据同步.偶然之间发现了这一款工具ELK 一.下载 1.Kettle可以在http://kettle.pentaho.org/网站下载 2.下载的 ...

  8. HTML5简介

    HTML5简介 HTML5是HTML的最新修订标准.2014年10月29日,万维网联盟(W3C)宣布,经过8年的努力,HTML5标准规范制定完成. HTML5的设计目的是在移动设备上使用多媒体. HT ...

  9. shiro的使用2 灵活使用shiro的密码服务模块

    shiro最闪亮的四大特征是认证,授权,加密,会话管理. 上一篇已经演示了如何使用shiro的授权模块,有了shiro这个利器,可以以统一的编码方式对用户的登入,登出,认证进行管理,相当的优雅. 为了 ...

  10. 决策树ID3算法的java实现(基本试用所有的ID3)

    已知:流感训练数据集,预定义两个类别: 求:用ID3算法建立流感的属性描述决策树 流感训练数据集 No. 头痛 肌肉痛 体温 患流感 1 是(1) 是(1) 正常(0) 否(0) 2 是(1) 是(1 ...