hdu1222&hdu1014 循环群的生成元
hdu1222
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=1222
题目大意:
大灰狼追小白兔。小白兔可以躲起来的洞绕成一个圈,大灰狼从0这个点出发,每次走m个,问这些洞有木有可以不被狼找到的
解题思路:
相当于判断m是不是模n加群的生成元,如果是的话,那么可以到达0到n-1每个洞,不是则不能到达每个洞。
而判断是否为生成元,直接判断gcd(n, m) = 1,等于1就是生成元。
关于循环群生成元的知识点这里 -> 传送门
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<set>
#include<cmath>
using namespace std;
const int maxn = 1e4 + ;
typedef long long ll;
ll T, n, m;
ll gcd(ll a, ll b)
{
return b == ? a : gcd(b, a % b);
}
int main()
{
cin >> T;
while(T--)
{
cin >> n >> m;
if(gcd(n, m) == )printf("NO\n");
else printf("YES\n");
}
return ;
}
hdu1014
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=1014
题目大意:
公式:seed(x+1) = [seed(x) + STEP] % MOD;如果STEP=3,MOD=5,那么seed的值为以3,1,4,2,0为一组循环,即[0,MOD-1],这种称为“Good Choice”;如果STEP=15,MOD=20,那么seed的值为以15,10,5,0为一组循环,不满足[0,MOD-1],所以这种称为“Bad Choice”。
思路:
和之前一样,这里代码直接给暴力的
#include<stdio.h>
int a[];
int main()
{
int step,mod,i;
while(scanf("%d%d",&step,&mod)!=EOF)
{
a[]=;
for(i=;i<=mod;i++)
{
a[i]=(a[i-]+step)%mod;
if(a[i]==)break;
}
if(i==mod)printf("%10d%10d Good Choice\n\n",step,mod);
else printf("%10d%10d Bad Choice\n\n",step,mod);
}
return ;
}
hdu1222&hdu1014 循环群的生成元的更多相关文章
- c++ 离散数学 群的相关判断及求解
采用C/C++/其它语言编程,构造一个n阶群<G={a,b,c,…},*>,G的阶|G|满足:3<=|G|<=6 1.判断该群是否是循环群,若是,输出该群的某个生成元. 2.给 ...
- 证明与计算(2): 离散对数问题(Discrete logarithm Problem, DLP)
离散对数问题,英文是Discrete logarithm Problem,有时候简写为Discrete log,该问题是十几个开放数学问题(Open Problems in Mathematics, ...
- hdu1014
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1014 //hdu1014 0ms #include<stdio.h> #include&l ...
- 生成元(Digit Generator ,ACM/ICPC Seoul 2005 ,UVa 1583)
生成元:如果 x 加上 x 各个数字之和得到y,则说x是y的生成元. n(1<=n<=100000),求最小生成元,无解输出0. 例如:n=216 , 解是:198 198+1+9+8=2 ...
- GF(2^8)生成元
目的是找出所有GF(2^8)的生成元. 方法很简单,从2开始遍历,将每个元素都与自身相乘255次,看是否能得到1~255.若能,则是生成元. #include<iostream> #inc ...
- [C++]最小生成元 (Digit Generator, ACM/ICPC Seoul 2005, UVa1583)
Question 例题3-5 最小生成元 (Digit Generator, ACM/ICPC Seoul 2005, UVa1583) 如果x+x的各个数字之和得到y,就是说x是y的生成元.给出n( ...
- 生成元(UVa1583)
题目具体描述见:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_prob ...
- HDU6038:Function(循环群/节+找公式)
传送门 题意 给出一个\(0\sim n-1\)的排列a,一个\(0\sim {m-1}\)的排列b,询问满足\[f(i)=b_{f(a_i)}~~(0\le i\le n-1)\]的函数的个数 分析 ...
- 生成元(Digit Generator, ACM/ICPC Seoul 2005, UVa1583)
如果x加上x的各个数字之和得到y,就说x是y的生成元.给出n(1≤n≤100000),求最小 生成元.无解输出0.例如,n=216,121,2005时的解分别为198,0,1979. [分析] 本题看 ...
随机推荐
- C语言第三次博客作业---单层循环结构
一.PTA实验作业 题目1 1.实验代码 int N,i; //N为用户数,i记录循环变量 double height; //height放身高 char sex; //sex放性别F为女,M为男 s ...
- VUE请求本地数据的配置json-server
VUE开发请求本地数据的配置,早期的vue-lic下面有dev-server.js和dev-client.js两文件,请求本地数据在dev-server.js里配置,最新的vue-webpack-te ...
- 关于java中的值传递与引用传递遇到的问题
来源于:https://www.nowcoder.com/test/question/done?tid=14302398&qid=25373#summary 下列java程序的输出结果为___ ...
- java排序算法(十):桶式排序
java排序算法(十):桶式排序 桶式排序不再是一种基于比较的排序方法,它是一种比较巧妙的排序方式,但这种排序方式需要待排序的序列满足以下两个特征: 待排序列所有的值处于一个可枚举的范围之类: 待排序 ...
- iptables.sh 初始化防火墙配置
#!/bin/bash iptables -F iptables -X iptables -Z iptables -A INPUT -i lo -j ACCEPT iptables -A INPUT ...
- GLSL Versions和GLSL ES Versions 对比
You can use the #version command as the first line of your shader to specify GLSL version: #version ...
- JavaEE Servlet 核心方法及生命周期
做JavaWeb开发,免不了要和Servlet打交道.Servlet是Sun(Oracle)官方定义的一个Web开发规范,所有Servlet开发都必须遵守.自己以前也没有从头做过Web开发,所以这方面 ...
- (译文)JavaScript基础——JavaScript中的深拷贝
在JavaScript中如何拷贝一个对象? 通过引用调用 function mutate(obj) { obj.a = true; } const obj = {a: false}; mutate(o ...
- 《构建之法》教学笔记——Python中的效能分析与几个问题
<构建之法:现代软件工程>中第2章对效能分析进行了介绍,基于的工具是VSTS.由于我教授的学生中只有部分同学选修了C#,若采用书中例子讲解,学生可能理解起来比较困难.不过所有这些学生都学习 ...
- 阿尔法冲刺——Postmortem会议
设想与目标 1.我们软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 这个问题,我们觉得我们的软件目标还是比较明确的,在SRS中也给出了典型用户和典型场景的清晰的描述. 2 ...