Description

输入一个整数n和一个整数p,你需要求出$(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p$,其中gcd(a,b)表示a与b的最大公约数。

Input

一行两个整数p、n。

Output

一行一个整数$(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p$。

Sample Input

998244353 2000

Sample Output

883968974

HINT

对于20%的数据,$n \leq 1000$。

对于30%的数据,$n \leq 5000$。

对于60%的数据,$n \leq 10^6$,时限1s。

对于另外20%的数据,$n \leq 10^9$,时限3s。

对于最后20%的数据,$n \leq 10^{10}$,时限6s。

对于100%的数据,$5 \times 10^8 \leq p \leq 1.1 \times 10^9$且p为质数。

题解

题目要求 $$\sum_{i=1}^n\sum_{j=1}^n ij\cdot gcd(i,j)$$

提出 $gcd$ \begin{aligned}&\sum_{d=1}^nd\sum_{i=1}^{n}\sum_{j=1}^nij[gcd(i,j)=d]\\=&\sum_{d=1}^nd^3\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{n}{d}\right\rfloor}ij[gcd(i,j)=1]\\=&\sum_{d=1}^nd^3\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{n}{d}\right\rfloor}ij\sum_{k\mid gcd(i,j)}\mu(k)\\=&\sum_{d=1}^nd^3\sum_{k=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\mu(k)k^2\sum_{i=1}^{\left\lfloor\frac{n}{kd}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{n}{kd}\right\rfloor}ij\end{aligned}

令 $F(x)=\sum\limits_{i=1}^xi=\frac{x(x+1)}{2}$ , $T=kd$ \begin{aligned}\Rightarrow&\sum_{d=1}^nd^3\sum_{k=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\mu(k)k^2F^2\left(\frac{n}{kd}\right)\\=&\sum_{T=1}^nF^2\left(\frac{n}{T}\right)\sum_{d\mid T}d^3\left(\frac{T}{d}\right)^2\mu\left(\frac{T}{d}\right)\\=&\sum_{T=1}^nF^2\left(\frac{n}{T}\right)T^2\sum_{d\mid T}d\cdot\mu\left(\frac{T}{d}\right)\end{aligned}

前面的很好处理,但那个狄利克雷卷积是什么鬼...我们把它拎出来调教一下: $$\sum_{d\mid T}d\cdot\mu\left(\frac{T}{d}\right)$$

这个形式似乎不好看,我们让它女装变个样子: $$\sum_{d\mid T}\frac{T}{d}\cdot\mu(d)=T\sum_{d\mid T}\frac{\mu(d)}{d}$$

这玩意不就是 $\varphi(T)$ 么。带入原柿 $$\sum_{T=1}^nF^2\left(\frac{n}{T}\right)T^2\varphi(T)$$

现在就好搞♂了,美滋滋。记 $f(T)=T^2\varphi(T)$ 显然他是个积性函数,可以杜教筛了。

考虑求 $S(n)=\sum\limits_{i=1}^nf(i)$

上述式子 $$g(1)S(n)=\sum_{i=1}^n(g*f)(i)-\sum_{i=2}^ng(i)S\left(\left\lfloor\frac{n}{i}\right\rfloor\right)$$

考虑到 $\sum\limits_{d\mid n}\varphi(d)=n$ ,又由于 $(g*f)(n)=\sum\limits_{d\mid n}\varphi(d)d^2\cdot g\left(\frac{n}{d}\right)$ 。我们考虑让 $g(n)=id^2(n)$ ,那么 $(id*f)(n)=\sum\limits_{d\mid n}n^2\cdot\varphi(d)=n^3$ 。由于 $\sum\limits_{i=1}^ni^3=\frac{n^2(n+1)^2}{4}=\left(\frac{n(n+1)}{2}\right)^2=F^2(n)$ 。显然这个卷积的前缀为 $\sum\limits_{i=1}^n(g*f)(i)=F^2(n)$ 。

故对于 $f$ $$S(n)=F^2(n)-\sum_{i=2}^ni^2\cdot S\left(\left\lfloor\frac{n}{i}\right\rfloor\right)$$

由公式 $\sum\limits_{i=1}^ni^2=\frac{n(n+1)(2n+1)}{6}$ 现在整个柿子都好算了。

 //It is made by Awson on 2018.1.25
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = ;
void read(LL &x) {
char ch; bool flag = ;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || ); ch = getchar());
for (x = ; isdigit(ch); x = (x<<)+(x<<)+ch-, ch = getchar());
x *= -*flag;
}
void write(LL x) {
if (x > ) write(x/);
putchar(x%+);
} LL n, p, phi[N+], inv2, inv6;
LL prime[N+], isprime[N+], tot;
map<LL,LL>mp; LL quick_pow(LL a, LL b) {
LL ans = ; a %= p;
while (b) {
if (b&) ans = ans*a%p;
a = a*a%p; b >>= ;
}
return ans;
}
void get_pre() {
memset(isprime, , sizeof(isprime)); isprime[] = , phi[] = ;
for (int i = ; i <= N; i++) {
if (isprime[i]) prime[++tot] = i, phi[i] = 1ll*(i-)*i%p*i%p;
for (int j = ; j <= tot && i*prime[j] <= N; j++) {
isprime[i*prime[j]] = ;
if (i%prime[j]) phi[i*prime[j]] = phi[i]*(prime[j]-)%p*prime[j]%p*prime[j]%p;
else {phi[i*prime[j]] = phi[i]*prime[j]%p*prime[j]%p*prime[j]%p; break; }
}
(phi[i] += phi[i-]) %= p;
}
}
LL sum(LL n) {n %= p; return n*(n+)%p*inv2%p; }
LL sum2(LL n) {n %= p; return n*(n+)%p*(n*+)%p*inv6%p; }
LL get_phi(LL n) {
if (n <= N) return phi[n];
if (mp.count(n)) return mp[n];
LL ans = sum(n)*sum(n)%p;
for (LL i = , last; i <= n; i = last+) {
last = n/(n/i); (ans -= get_phi(n/i)*((sum2(last)-sum2(i-))%p)%p) %= p;
}
return mp[n] = ans;
}
void work() {
read(p), read(n); get_pre(); inv2 = quick_pow(, p-), inv6 = quick_pow(, p-); LL ans = ;
for (LL i = , last; i <= n; i = last+) {
last = n/(n/i); LL s = sum(n/i);
(ans += s*s%p*((get_phi(last)-get_phi(i-))%p)%p) %= p;
}
writeln((ans+p)%p);
}
int main() {
work();
return ;
}

[Luogu 3768]简单的数学题的更多相关文章

  1. luogu 3768 简单的数学题 (莫比乌斯反演+杜教筛)

    题目大意:略 洛谷传送门 杜教筛入门题? 以下都是常规套路的变形,不再过多解释 $\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N}ijgcd(i,j)$ $\sum ...

  2. Luogu P3768 简单的数学题

    非常恶心的一道数学题,推式子推到吐血. 光是\(\gcd\)求和我还是会的,但是多了个\(ij\)是什么鬼东西. \[\sum_{i=1}^n\sum_{j=1}^nij\gcd(i,j)=\sum_ ...

  3. luogu P3768 简单的数学题 杜教筛 + 欧拉反演 + 逆元

    求 $\sum_{i=1}^{n}\sum_{j=1}^{n}ijgcd(i,j)$   考虑欧拉反演: $\sum_{d|n}\varphi(d)=n$   $\Rightarrow \sum_{i ...

  4. 【数学】HPU--1037 一个简单的数学题

    1037: 一个简单的数学题 [数学] 时间限制: 1 Sec 内存限制: 128 MB提交: 259 解决: 41 统计 题目描述 小明想要知道$a^b$的值,但是这个值会非常的大. 所以退而求其次 ...

  5. 【Luogu3768】简单的数学题(莫比乌斯反演,杜教筛)

    [Luogu3768]简单的数学题(莫比乌斯反演,杜教筛) 题面 洛谷 \[求\sum_{i=1}^n\sum_{j=1}^nijgcd(i,j)\] $ n<=10^9$ 题解 很明显的把\( ...

  6. 【LG3768】简单的数学题

    [LG3768]简单的数学题 题面 求 \[ (\sum_{i=1}^n\sum_{j=1}^nij\text{gcd}(i,j))\text{mod}p \] 其中\(n\leq 10^{10},5 ...

  7. luoguP3768 简单的数学题

    题目链接 luoguP3768 简单的数学题 题解 上面那个式子的最后一步,需要定理 用数学归纳法证明 \(S1=1^3=1^2\) \(S2=1^3+2^3=9=3^2=(1+2)^2\) \(S3 ...

  8. 洛谷 P3768 简单的数学题 解题报告

    P3768 简单的数学题 题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数\(n\)和一个整数\(p,\)你需要求出\((\sum_{i=1}^n\sum_{j=1}^n ijgc ...

  9. loj#6229 这是一道简单的数学题

    \(\color{#0066ff}{ 题目描述 }\) 这是一道非常简单的数学题. 最近 LzyRapxLzyRapx 正在看 mathematics for computer science 这本书 ...

随机推荐

  1. 路径字符串数据转化为树型层级对象,path to json tree

    由于项目中使用了react 及 ant-design ,在使用tree树型控件时,需要 类似下面的数据, const treeData = [{ title: '0-0', key: '0-0', c ...

  2. 【Spring源码深度解析学习系列】容器的基础XmlBeanFactory(二)

    一.配置文件封装 Spring的配置文件读取是通过ClassPathResource进行封装的,如new ClassPathResource("test.xml"),那么Class ...

  3. C语言第七次作业

    一.PTA实验作业 题目1:求整数序列中出现次数最多的数 1.本题PTA提交列表 2.设计思路 定义一个整型数组a[1001],i,j 为循环变量,N,定义数组b[1001]={0} 输入N for( ...

  4. 团队作业9——事后分析(Beta版本)

    事后诸葛亮分析 1.         总结 团队合照   a. 项目管理之事后诸葛亮会 ·设想和目标 (1)我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 个人学习 ...

  5. 团队作业7——第二次项目冲刺(Beta版本12.04)

    1.当天站立式会议照片 本次会议内容:1:每个人汇报自己完成的工作.2:组长分配各自要完成的任务. 2.每个人的工作 黄进勇:项目整合,后台代码. 李勇:前台界面优化. 何忠鹏:数据库模块. 郑希彬: ...

  6. Flask学习 三 web表单

    web表单 pip install flask-wtf 实现csrf保护 app.config['SECRET_KEY']='hard to guess string' # 可以用来存储框架,扩展,程 ...

  7. 201421123042 《Java程序设计》第4周学习总结

    1. 本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词 继承中的关键词:Soper,object,override,project, 1.2 尝试使用思维导图将这些关键词组织起来.注: ...

  8. 《高级软件测试》Linux平台Jira的安装与配置

    现在大部分的程序开发都是在linux下进行的,jira更多的时候是安装在linux上,那么,如何在linux下安装配置jira呢?本文将以Ubuntu 17.10和jira7.5.2为例,对linux ...

  9. 6块300G SCSI RAID5,两块硬盘损坏的数据恢复总结

    [用户单位]XXXX网站[数据恢复故障描述]DELL POWEREDGE 2850服务器,内置6块300G SCSI硬盘 ,组成RAID5,安装LINUX REDHAT 4操作系统,存储大量照片,文件 ...

  10. java JDK源码解析

    Hashmap 使用java语言进行系统开发时,使用得比较多得数据结构hashmap,它以[key,value],进行数据存储,通过key可以快速找到到对应的value值,但是key,value不能是 ...