Description

  回答T组询问,有多少组gcd(x,y)=d,x<=a, y<=b。T, a, b<=4e5。

Solution

  显然对于gcd=d的,应该把a/d b/d,然后转为gcd=1计算

  计算用莫比乌斯反演相信大家都会

  关键是有T组询问n^2会T

  于是有这样一个优化可以做到每次sqrt(n)

  

  每一次是ret+=mu[i]*(n/i)*(m/i)

  可是除法向下取整所以会导致很多i的(n/i)*(m/i)一样

  具体来说,向下取整得到的结果一定是约数所以对于(n/i)最多2sqrt(n)种

  那么(n/i)*(m/i)放一起也就4sqrt(n)种

  这个序列一定是不上升的,所以考虑对所有的(n/i)*(m/i)视为一块相同的一起算

  那么肯定要记录下mu[i]的前缀和

  如何快速得到每一块的l和r?

  每一块的r肯定要么n%i==0要么m%i==0

  于是用pos=min(n/(n/i),m/(m/i)) 定位

  当然pos+1就是下一块的l了

Code

 #include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=5e4+; int flag[maxn],prime[maxn],cnt;
int mu[maxn],sum[maxn]; int getmu(){
mu[]=;
for(int i=;i<maxn;i++){
if(!flag[i]){
prime[++cnt]=i;
mu[i]=-;
}
for(int j=;i*prime[j]<maxn&&j<=cnt;j++){
flag[i*prime[j]]=;
if(i%prime[j]==){
mu[i*prime[j]]=;
break;
}
mu[i*prime[j]]=-mu[i];
}
}
for(int i=;i<maxn;i++)
sum[i]=sum[i-]+mu[i];
} int cal(int n,int m){
int ret=,pos;
if(n>m) swap(n,m);
for(int i=;i<=n;i=pos+){
pos=min(n/(n/i),m/(m/i));
ret+=(sum[pos]-sum[i-])*(n/i)*(m/i);
}
return ret;
} int main(){
int T,a,b,d;
scanf("%d",&T);
getmu(); while(T--){
scanf("%d%d%d",&a,&b,&d);
a/=d,b/=d;
printf("%d\n",cal(a,b));
}
return ;
}

【莫比乌斯反演】BZOJ1101 [POI2007]zap的更多相关文章

  1. Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...

  2. BZOJ1101 POI2007 Zap 【莫比乌斯反演】

    BZOJ1101 POI2007 Zap Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b, ...

  3. [BZOJ1101][POI2007]Zap

    [BZOJ1101][POI2007]Zap 试题描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd ...

  4. BZOJ1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2951  Solved: 1293[Submit][Status ...

  5. BZOJ1101 [POI2007]Zap 和 CF451E Devu and Flowers

    Zap FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到 ...

  6. 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)

    先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...

  7. [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演

    对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...

  8. 【BZOJ1101】[POI2007] Zap(莫比乌斯反演)

    点此看题面 大致题意: 求\(\sum_{x=1}^N\sum_{y=1}^M[gcd(x,y)==d]\). 一道类似的题目 推荐先去做一下这道题:[洛谷2257]YY的GCD,来初步了解一下莫比乌 ...

  9. 1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MB Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定 ...

随机推荐

  1. Eclipse常见设置

    当新建一个workspace时,习惯做下面的设置: 1. 在eclipse中,默认的Text file encoding是GBK(操作系统是中文简体):如果操作系统是中文繁体,默认是MS950(Big ...

  2. 我对IoC/DI的理解

    IoC IoC: Inversion of Control,控制反转, 控制权从应用程序转移到框架(如IoC容器),是框架共有特性 1.为什么需要IoC容器 1.1.应用程序主动控制对象的实例化及依赖 ...

  3. 手机号 验证函数 C++

    直接上代码 #include <regex> bool IsValidPhoneNumber(const std::string& strPhone) { std::regex  ...

  4. 2013-8:SDCE大会笔记

    百度移动云三大开发框架:Clouda,SiteApp,AppBuilder MBaaS解决高性能Server很难的问题 百度开放云的区域运营服务于创业者 Pinterest架构变迁: 互联网就是把线下 ...

  5. 下载Github上某个项目的子文件夹和单个文件

    preface Github下的项目可能很大,里面有很多的子文件夹,我们可能只需要使用某个子目录下的资源,可以不用下载完整的repo就能使用. 例如,我想下载这个repo中的字典文件:https:// ...

  6. MariaDB/MySQL备份和恢复(三):xtrabackup用法和原理详述

    本文目录: 1.安装xtrabackup 2.备份锁 3.xtrabackup备份原理说明 3.1 备份过程(backup阶段) 3.2 准备过程(preparing阶段) 3.3 恢复过程(copy ...

  7. 谈谈Javascript异步代码优化

    关于 微信公众号:前端呼啦圈(Love-FED) 我的博客:劳卜的博客 知乎专栏:前端呼啦圈 前言 在实际编码中,我们经常会遇到Javascript代码异步执行的场景,比如ajax的调用.定时器的使用 ...

  8. Android Zxing 转换竖屏扫描且提高识别率

    最近的一个Android需要用到扫码功能,用的是Zxing开源库.Zxing的集成就不说了,但是Zxing默认的是横屏扫码,在实际生产中并不适用,需要改为竖屏扫描. 转竖屏步骤: 1>. And ...

  9. 爬虫-Python爬虫常用库

    一.常用库 1.requests 做请求的时候用到. requests.get("url") 2.selenium 自动化会用到. 3.lxml 4.beautifulsoup 5 ...

  10. dmraid 用法

    dmraid 全名为设备对应器磁盘阵列(Device Mapper RAID),利用Linux内核提供的设备对应器(Device Mapper)机制 ,为多种磁盘阵列设备提供磁盘阵列的设备文件,让用户 ...