Description

  回答T组询问,有多少组gcd(x,y)=d,x<=a, y<=b。T, a, b<=4e5。

Solution

  显然对于gcd=d的,应该把a/d b/d,然后转为gcd=1计算

  计算用莫比乌斯反演相信大家都会

  关键是有T组询问n^2会T

  于是有这样一个优化可以做到每次sqrt(n)

  

  每一次是ret+=mu[i]*(n/i)*(m/i)

  可是除法向下取整所以会导致很多i的(n/i)*(m/i)一样

  具体来说,向下取整得到的结果一定是约数所以对于(n/i)最多2sqrt(n)种

  那么(n/i)*(m/i)放一起也就4sqrt(n)种

  这个序列一定是不上升的,所以考虑对所有的(n/i)*(m/i)视为一块相同的一起算

  那么肯定要记录下mu[i]的前缀和

  如何快速得到每一块的l和r?

  每一块的r肯定要么n%i==0要么m%i==0

  于是用pos=min(n/(n/i),m/(m/i)) 定位

  当然pos+1就是下一块的l了

Code

 #include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=5e4+; int flag[maxn],prime[maxn],cnt;
int mu[maxn],sum[maxn]; int getmu(){
mu[]=;
for(int i=;i<maxn;i++){
if(!flag[i]){
prime[++cnt]=i;
mu[i]=-;
}
for(int j=;i*prime[j]<maxn&&j<=cnt;j++){
flag[i*prime[j]]=;
if(i%prime[j]==){
mu[i*prime[j]]=;
break;
}
mu[i*prime[j]]=-mu[i];
}
}
for(int i=;i<maxn;i++)
sum[i]=sum[i-]+mu[i];
} int cal(int n,int m){
int ret=,pos;
if(n>m) swap(n,m);
for(int i=;i<=n;i=pos+){
pos=min(n/(n/i),m/(m/i));
ret+=(sum[pos]-sum[i-])*(n/i)*(m/i);
}
return ret;
} int main(){
int T,a,b,d;
scanf("%d",&T);
getmu(); while(T--){
scanf("%d%d%d",&a,&b,&d);
a/=d,b/=d;
printf("%d\n",cal(a,b));
}
return ;
}

【莫比乌斯反演】BZOJ1101 [POI2007]zap的更多相关文章

  1. Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...

  2. BZOJ1101 POI2007 Zap 【莫比乌斯反演】

    BZOJ1101 POI2007 Zap Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b, ...

  3. [BZOJ1101][POI2007]Zap

    [BZOJ1101][POI2007]Zap 试题描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd ...

  4. BZOJ1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2951  Solved: 1293[Submit][Status ...

  5. BZOJ1101 [POI2007]Zap 和 CF451E Devu and Flowers

    Zap FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到 ...

  6. 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)

    先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...

  7. [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演

    对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...

  8. 【BZOJ1101】[POI2007] Zap(莫比乌斯反演)

    点此看题面 大致题意: 求\(\sum_{x=1}^N\sum_{y=1}^M[gcd(x,y)==d]\). 一道类似的题目 推荐先去做一下这道题:[洛谷2257]YY的GCD,来初步了解一下莫比乌 ...

  9. 1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MB Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定 ...

随机推荐

  1. 使用lombok的@Data @NoArgsConstructor @AllArgsConstructor @EqualsAndHashCode注解,编译时报错 找不到符号

    使用lombok添加@AllArgsConstructor后报错"错误:找不到符号 符号: 问题:未启用lombok注解 解决: settings->build->compile ...

  2. Python人工智能之-三大数学难点 !

    1. 微积分: 定积分与不定积分.全微分.最小二乘法.二重积分.微分方程与差分方程等... 2. 线性代数: 行列式.矩阵.向量.线性方程组.矩阵的特性和特性向量.二次型等... 3. 概率论和统计学 ...

  3. 中文字体名称对照表(unicode码)及20个web安全字体

    在Web编码中,CSS默认应用的Web字体是有限的,虽然在新版本的CSS3,我们可以通过新增的@font-face属性来引入特殊的浏览器加载字体.但多数情况下,考虑各个因素的影响我们还是在尽量充分利用 ...

  4. log4j2.xml全配置文件

    可以参考如下配置 <?xml version="1.0" encoding="UTF-8"?> <!--日志级别以及优先级排序: OFF &g ...

  5. laravel 5.5 安装

    PHP要求 PHP> = 7.0.0 OpenSSL PHP扩展 PDO PHP扩展 Mbstring PHP扩展 Tokenizer PHP扩展 XML PHP扩展 通过Composer创建项 ...

  6. JDK AtomicInteger 源码分析

    @(JDK)[AtomicInteger] JDK AtomicInteger 源码分析 Unsafe 实例化 Unsafe在创建实例的时候,不能仅仅通过new Unsafe()或者Unsafe.ge ...

  7. Node笔记三

    global --类似与客户端javascript运行环境中的window process --用于获取当前node进程信息,一般用于获取环境变量之类的信息 console --node中内置的con ...

  8. 运算符优先级--C

    优先口决 括号成员第一; //括号运算符[]() 成员运算符. -> 全体单目第二; //所有的单目运算符比如++ -- +(正) -(负) 指针运算*& 乘除余三,加减四; //这个& ...

  9. C++相关:C++的IO库

    前言 基本的IO库设施 istream(输入流类型),提供输入操作. ostream(输出流类型),提供输出操作. cin,一个istream对象,从标准输入读取数据. cout,一个ostream对 ...

  10. [Mysql]——通过例子理解事务的4种隔离级别(转)

    SQL标准定义了4种隔离级别,包括了一些具体规则,用来限定事务内外的哪些改变是可见的,哪些是不可见的. 低级别的隔离级一般支持更高的并发处理,并拥有更低的系统开销. 一.事务隔离级别分类 第1级别:R ...