本文翻译自Coding-Geek文章:《 How does a relational database work》。

原文链接:http://coding-geek.com/how-databases-work/#Buffer-Replacement_strategies

先翻译高速缓存章节,后续有时间再翻译其它章节。翻译内容在原文的目录:

一、数据管理器



数据查询器执行查询操作,从数据表中获取数据,它向Data Manger发送请求,获取数据。其中存在2个问题:

  1. 关系型数据使用事物模型,当数据库在执行修改操作时,不能执行查询操作。避免查询出脏数据。
  2. 数据提取是最慢的数据库操作,因为数据要从磁盘上读取。因此,数据库必须要有一个非常强大的数据缓存系统。

本章,我们将看一下关系数据是如何解决这两个问题的。我们不会探讨数据库是如何从磁盘加载数据的,这个不是本文的重点(受篇幅所限,不展开分析)。

二、高速缓存器



正如我之前所言,数据库的性能瓶颈是I/O。为了提升性能,现代数据库都使用了高速缓存。

数据查询器从Cache Manger中获取数据,而不是直接从磁盘文件中读取数据。Cache Manger管理着一片内存区域,叫缓存池。 直接从内存获取数据,使得访问数据库的性能突飞猛进。但是,很难评估使用高速缓存的重要性有多大,这取决于你要做什么样的数据库操作。

  • 顺序访问 VS 随机访问。
  • 读操作 VS 写操作。

以及数据库使用的是什么样的磁盘

  • 7.2k/10k/15k rpm HDD
  • SSD
  • RAID 1/5/…

但是,我敢说使用内存高速缓存比不适用缓存直接从磁盘读数据快100到10万倍。

这也导致另外一个问题(所有的数据库都有这个问题……), 高速缓存器需要在查询器访问数据之前预取数据,否则查询器需要挂起,等待高速缓存器把数据从磁盘加载到内存先。

三、缓存数据预取

问题的核心就在“数据预取”。数据查询器清楚需要哪些数据,因为它了解每一次查询操作的具体要求,也清楚数据库表的存储结构。数据预取的基本逻辑是这样的:

  1. 数据查询器在获取第一批数据时通知Cache Manger提前加载第二批数据到缓存中。
  2. 数据查询器在获取第二批数据时通知Cache Manger提前加载第三批数据,而第一批数据可以从缓存中移除了。
  3. …….

Cache Manger存储所有的数据在缓存池中。为了确定缓存池中数据是否正在被使用,Cache Manger需要维护一些关于这些数据的额外信息(被称之为锁的东西)。

但有时,数据查询器不清楚下一步需要什么数据,或者数据库没有提供指定预取哪些数据的功能。取而代之,数据库提供的是随机预取功能(例如,查询了数据1,2,3后,它因为你可能还需要7,8,9,提前把7,8,9加载到缓存中)或者顺序缓存功能(执行一次查询后,将磁盘上查询数据临近的其它数据也预取到缓存中)。

为了评估Cache Manger预期机制工作的效果,现代数据库系统提供一个指标度量:缓存命中率。缓存命中率描述查询器从缓存中拿到数据的几率(在不需要读磁盘文件的情况下)。

说明:糟糕的缓存命中率,并不总是意味Cache工作得不好。更多信息可参考Oracle说明文档。

但是,高速缓存内存大小是受限的,缓存内容需要不断吐故纳新。缓存数据的加载和移除都需要消耗磁盘I/O和网络I/O资源。如果某个查询操作要经常执行,缓存数据频繁的加载和移除是非常低效的。为了解决这个问题,现代数据库都使用了一些缓存置换策略。

四、缓存置换策略

大多数现代数据库缓存置换策略都使用LRU算法,至少SQL Server, MySQL, Oracle and DB2是这样的。

1. LRU

LRU的意思是非最近当前使用。这个算法的是基于这样一种假设:最近使用过的数据,在将来被再次使用的概率很大,需要驻留在缓存中;反之,非最近当前使用的数据可移除。



为了方便理解,我们假设缓存中的数据未被加锁(因此可被移除)。举个例子说明它的工作原理,这个简单的示例中缓存池能容纳3个数据。

  1. Cache Manger使用数据1后,将1放入缓存。
  2. Cache Manger使用数据4后,将4放入缓存。
  3. Cache Manger使用数据3后,将3放入缓存。
  4. Cache Manger使用数据9后,将9放入缓存。由于缓存已满,需要先移除一条数据;移除哪一条?

    根据LRU原则,1是最远当前使用的数据,移除1后加入9。
  5. Cache Manger使用数据4后放入缓存,4变成了最近被使用过的数据。调整顺序。
  6. Cache Manger使用数据1后放入缓存,1变成了最近被使用过的数据。3被移除。
  7. ……

算法OK,但有一些限制,如果读取的是一张大表呢? 换言之,读取的表数据太大,超过了缓存空间的大小。使用该算法将清除缓存之前所有的数据,即使新加载上来的这张大表数据只会使用一次就不再使用。

2. 算法改进

为解决这个问题,一些数据库管理系统加了一些特殊规则。例如:Oracle规则说明:

对于超级大表的读取,直接从磁盘文件中读取数据,避免是用高速缓存。对于中型表,可以从磁盘文件直接读也可以用缓存;如果使用缓存应该把读取的数据放到LRU列表末尾(这样,新加入缓存数据时将先把该表的数据移除)。

LRU算法有高级版本,叫LRU-K。例如SQL Server使用的LRU-K, K=2。K代表的是考虑最近时间段,数据访问的次数。

前面的例子是LRU-K算法最简单的例子,只考虑一次访问,K = 1。LRU-K的原理如下:

  1. 记录数据的最近访问次数(最多记录K次)。
  2. 根据数据访问次数,设置一个权值。最近访问次数越多的权值越大。
  3. 当一批新的数据加载到缓存中时,权值大的数据不会被移除,即使该数据是很早就加载到缓存中的。
  4. 如果数据长时间未被再使用,权值会逐渐降低。

权值的计算是很耗资源的,这也是为什么 SQL Server使用K=2的原因。这种设置方式,投入产出比较高。

想更深入的了解LRU算法,可以参考一下算法文档(文档google)。

3. 其它算法

还有一些其它算法策略,用于管理高速缓存器。

  • 2Q(类似LRU-K算法)
  • CLOCK(类似LRU-K算法)
  • MRU(用得比较多的算法,逻辑类似LRU,用的是另一套规则)
  • LRFU(最近、最频繁使用算法)
  • ……

一些数据库允许你使用除默认算法外的其它算法。多种方式可选。

五、写缓存器

前讨论的最多的是读缓存器,它在数据使用之前将其提前加载到内存。数据库中还存在一种写缓存器,它将多次操作修改的数据存储累计起来,一次写到磁盘文件。降低对磁盘IO的频繁访问(数据库瓶颈在I/O)。

谨记,高速缓存中存储的是分页数据而不是人们直观印象中的行数据。如果缓存中的某一页数据被修改了,还没有保存到磁盘上,这页被称为“脏页”。有多种策略算法能评估脏页数据写到磁盘上的最佳时机,而这也和事物强相关(事务是下一章节将展开的内容)。

已翻译的《How does a relational database work》其它章节链接:

1. 关系型数据库工作原理-时间复杂度:http://blog.csdn.net/ylforever/article/details/51205332

2. 关系型数据库工作原理-归并排序:http://blog.csdn.net/ylforever/article/details/51216916

3. 关系型数据库工作原理-数据结构:http://blog.csdn.net/ylforever/article/details/51278954

4. 关系型数据库工作原理-高速缓存:http://blog.csdn.net/ylforever/article/details/50990121

5. 关系型数据库工作原理-事务管理(一):http://blog.csdn.net/ylforever/article/details/51048945

6. 关系型数据库工作原理-事务管理(二):http://blog.csdn.net/ylforever/article/details/51082294

关系型数据库工作原理-高速缓存(翻译自Coding-Geek文章)的更多相关文章

  1. 关系型数据库工作原理-归并排序(翻译自Coding-Geek文章)

    本文翻译自Coding-Geek文章:< How does a relational database work>. 原文链接:http://coding-geek.com/how-dat ...

  2. 关系型数据库工作原理-时间复杂度(翻译自Coding-Geek文章)

    本文翻译自Coding-Geek文章:< How does a relational database work>. 原文链接:http://coding-geek.com/how-dat ...

  3. 关系型数据库工作原理-数据结构(翻译自Coding-Geek文章)

    本文翻译自Coding-Geek文章:< How does a relational database work>. 原文链接:http://coding-geek.com/how-dat ...

  4. 关系型数据库工作原理-事务管理(二)(翻译自Coding-Geek文章)

    本文翻译自Coding-Geek文章:< How does a relational database work>. 原文链接:http://coding-geek.com/how-dat ...

  5. 关系型数据库工作原理-事务管理(一)(翻译自Coding-Geek文章)

    本文翻译自Coding-Geek文章:< How does a relational database work>. 原文链接:http://coding-geek.com/how-dat ...

  6. 关系型数据库工作原理-快速缓存(翻译自Coding-Geek文章)

    本文翻译自Coding-Geek文章:< How does a relational database work>. 原文链接:http://coding-geek.com/how-dat ...

  7. 关系型数据库工作原理-查询优化器(翻译自Coding-Geek文章)

    本文翻译自Coding-Geek文章:< How does a relational database work>.原文链接:http://coding-geek.com/how-data ...

  8. 关系型数据库工作原理-查询优化器之数据访问方式(翻译自Coding-Geek文章)

    本文翻译自Coding-Geek文章:< How does a relational database work>.原文链接:http://coding-geek.com/how-data ...

  9. 关系型数据库工作原理-查询优化器之索引(翻译自Coding-Geek文章)

    本文翻译自Coding-Geek文章:< How does a relational database work>.原文链接:http://coding-geek.com/how-data ...

随机推荐

  1. 低版本IE内核浏览器兼容placeholder属性解决办法

    最简便的一个方法,通过js实现. <input type="text" name="username" id="username" v ...

  2. Python基础——条件判断

    Python版本:3.6.2  操作系统:Windows  作者:SmallWZQ 到目前为止,Python基础系列的文章中的程序都是一条一条语句顺序执行的.在本章中,我会重点介绍让程序选择是否执行语 ...

  3. HDU 5056

    题意略. 巧妙的尺取法.我们来枚举每个字符str[i],计算以str[i]为结尾的符合题意的串有多少个.那么我们需要处理出str[i]的左边界j,在[j,i]之间的串均为符合题意的 串,那么str[i ...

  4. maven The superclass "javax.servlet.http.HttpServlet" was not found on the Java Build Path错误

    对于这个问题的话,请在pom文件中加入 <dependency> <groupId>javax.servlet</groupId> <artifactId&g ...

  5. 高并发WEB网站优化方案

    一.什么是高并发在互联网时代,所讲的并发.高并发,通常是指并发访问,也就是在某个时间点,有多少个访问同时到来.比如,百度首页同时有1000个人访问,那么也就是并发为1000.通常一个系统的日PV在千万 ...

  6. 使用C#开发C/S框架高级版添加新项目实例

    操作步骤: 1.新建一个项目CSFramework3.test,在CSFramework3.test项目下新建一个FormMan窗口(此时不需要继承). 2.按F7打开类,替换一下引用 using S ...

  7. SIFT解析(二)特征点位置确定

    最近微博上有人发起投票那篇论文是自己最受益匪浅的论文,不少人说是lowe的这篇介绍SIFT的论文.确实,在图像特征识别领域,SIFT的出现是具有重大意义的,SIFT特征以其稳定的存在,较高的区分度推进 ...

  8. 前端js,后台python实现RSA非对称加密

    先熟悉使用 在后台使用RSA实现秘钥生产,加密,解密; # -*- encoding:utf-8 -*- import base64 from Crypto import Random from Cr ...

  9. Hama顶点编程

    Hama是基于HDFS上的BSP模型实现. Apache Hame是Google Pregel的开源实现 Pregel是Google提出的一个面向大规模图计算的通用编程模型.许多实际应用中都涉及到大型 ...

  10. UnicodeDecodeError: 'utf-8' codec can't decode byte 0xce in position 52: invalid continuation byte

    代码: df_w = pd.read_table( r'C:\Users\lab\Desktop\web_list_n.txt', sep=',', header=None) 当我用pandas的re ...