【BZOJ4650】【NOI2016】优秀的拆分(后缀数组)
【BZOJ4650】【NOI2016】优秀的拆分(后缀数组)
题面
题解
如果我们知道以某个位置为开始/结尾的\(AA\)串的个数
那就直接做一下乘法就好
这个怎么求?
枚举一个位置
枚举串的长度
直接暴力算就好啦
至于是否可行,用\(SA\)求\(lcp\)就好啦
这样就是\(95\)分
NOI这么好拿部分分的???
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define MAX 35000
int x[MAX],y[MAX],t[MAX];
int SA[MAX],height[MAX],rk[MAX];
int lg[MAX],n,p[20][MAX],a[MAX];
char s[MAX];
int g[MAX],f[MAX],T;
bool cmp(int i,int j,int k){return y[i]==y[j]&&y[i+k]==y[j+k];}
void init()
{
memset(SA,0,sizeof(SA));
memset(height,0,sizeof(height));
memset(rk,0,sizeof(rk));
memset(x,0,sizeof(x));
memset(y,0,sizeof(y));
memset(t,0,sizeof(t));
memset(a,0,sizeof(a));
}
void GetSA()
{
int m=50;
for(int i=1;i<=n;++i)t[x[i]=a[i]]++;
for(int i=1;i<=m;++i)t[i]+=t[i-1];
for(int i=n;i>=1;--i)SA[t[x[i]]--]=i;
for(int k=1;k<=n;k<<=1)
{
int p=0;
for(int i=n-k+1;i<=n;++i)y[++p]=i;
for(int i=1;i<=n;++i)if(SA[i]>k)y[++p]=SA[i]-k;
for(int i=0;i<=m;++i)t[i]=0;
for(int i=1;i<=n;++i)t[x[y[i]]]++;
for(int i=1;i<=m;++i)t[i]+=t[i-1];
for(int i=n;i>=1;--i)SA[t[x[y[i]]]--]=y[i];
swap(x,y);
x[SA[1]]=p=1;
for(int i=2;i<=n;++i)
x[SA[i]]=cmp(SA[i],SA[i-1],k)?p:++p;
if(p>=n)break;
m=p;
}
for(int i=1;i<=n;++i)rk[SA[i]]=i;
for(int i=1,j=0;i<=n;++i)
{
if(j)--j;
while(a[i+j]==a[SA[rk[i]-1]+j])++j;
height[rk[i]]=j;
}
}
void Pre()
{
memset(p,63,sizeof(p));
for(int i=1;i<=n;++i)p[0][i]=height[i];
for(int j=1;j<15;++j)
for(int i=1;i<=n;++i)
p[j][i]=min(p[j-1][i],p[j-1][i+(1<<(j-1))]);
}
int Query(int i,int j)
{
return min(p[lg[j-i+1]][i],p[lg[j-i+1]][j-(1<<lg[j-i+1])+1]);
}
int lcp(int i,int j)
{
int l=min(rk[i],rk[j])+1,r=max(rk[i],rk[j]);
return Query(l,r);
}
int main()
{
for(int i=2;i<=30000;++i)lg[i]=lg[i>>1]+1;
scanf("%d",&T);
while(T--)
{
init();
scanf("%s",s+1);
n=strlen(s+1);
for(int i=1;i<=n;++i)a[i]=s[i]-96;
GetSA();Pre();
for(int i=1;i<=n;++i)
{
g[i]=0;
for(int l=1;l+l+i-1<=n;++l)
if(lcp(i,i+l)>=l)g[i]++;
}
for(int i=2;i<=n;++i)
{
f[i]=0;
for(int l=1;i-l-l+1>0;++l)
if(lcp(i-l-l+1,i-l+1)>=l)f[i]++;
}
int ans=0;
for(int i=1;i<n;++i)
ans+=f[i]*g[i+1];
printf("%d\n",ans);
}
return 0;
}
\(95\)分的暴力太显然了。。
原来\(NOI\)都是这样送分???
为什么NOIP 没有这么好的福利
想想怎么优化吧。。。
肯定不能枚举长度之后再暴力算每一个位置
那么,我们要考虑一个方法,
可以一次性算出连续的位置
想想我们怎么求\(AA\)这种形式??
计算\(lcp(i,i+len)>=len\)是否成立
但是,如果\(lcp(i,i+len)>=len\)
我们就会发现,有一段区间内都是有满足条件的子串
所以我们可以一起计算
现在仔细思考怎么算
因为每次是\(i\)和\(i+len\)
所以我们只要枚举位置是\(len\)的倍数的地方就好
旁边的地方我们要想办法算出来
第一个,是向后如果可以增加的话
\(lcp(i,i+len)>=L\)我就会获得向后的一段连续区间
如果只算向后,会忽略掉向前的一段
所以再算一下\(lcs(i,i+len)\)这段,这两边拼起来
如果满足条件,证明这一段区间都是可行的
这样就可以差分全部\(+1\)
如果重复的部分够多
这样算可能会影响到别的块里面
所以要强制只在自己这一段里面算
具体的实现看代码啦
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define MAX 35000
int lg[MAX],n;
char s[MAX];
int g[MAX],f[MAX],T;
struct SA
{
int p[20][MAX],a[MAX];
int x[MAX],y[MAX],t[MAX];
int SA[MAX],height[MAX],rk[MAX];
bool cmp(int i,int j,int k){return y[i]==y[j]&&y[i+k]==y[j+k];}
void init()
{
memset(SA,0,sizeof(SA));
memset(height,0,sizeof(height));
memset(rk,0,sizeof(rk));
memset(x,0,sizeof(x));
memset(y,0,sizeof(y));
memset(t,0,sizeof(t));
memset(a,0,sizeof(a));
}
void GetSA()
{
int m=50;
for(int i=1;i<=n;++i)t[x[i]=a[i]]++;
for(int i=1;i<=m;++i)t[i]+=t[i-1];
for(int i=n;i>=1;--i)SA[t[x[i]]--]=i;
for(int k=1;k<=n;k<<=1)
{
int p=0;
for(int i=n-k+1;i<=n;++i)y[++p]=i;
for(int i=1;i<=n;++i)if(SA[i]>k)y[++p]=SA[i]-k;
for(int i=0;i<=m;++i)t[i]=0;
for(int i=1;i<=n;++i)t[x[y[i]]]++;
for(int i=1;i<=m;++i)t[i]+=t[i-1];
for(int i=n;i>=1;--i)SA[t[x[y[i]]]--]=y[i];
swap(x,y);
x[SA[1]]=p=1;
for(int i=2;i<=n;++i)
x[SA[i]]=cmp(SA[i],SA[i-1],k)?p:++p;
if(p>=n)break;
m=p;
}
for(int i=1;i<=n;++i)rk[SA[i]]=i;
for(int i=1,j=0;i<=n;++i)
{
if(j)--j;
while(a[i+j]==a[SA[rk[i]-1]+j])++j;
height[rk[i]]=j;
}
}
void Pre()
{
memset(p,63,sizeof(p));
for(int i=1;i<=n;++i)p[0][i]=height[i];
for(int j=1;j<15;++j)
for(int i=1;i<=n;++i)
p[j][i]=min(p[j-1][i],p[j-1][i+(1<<(j-1))]);
}
int Query(int i,int j)
{
return min(p[lg[j-i+1]][i],p[lg[j-i+1]][j-(1<<lg[j-i+1])+1]);
}
int lcp(int i,int j)
{
int l=min(rk[i],rk[j])+1,r=max(rk[i],rk[j]);
return Query(l,r);
}
}A,B;
int main()
{
for(int i=2;i<=30000;++i)lg[i]=lg[i>>1]+1;
scanf("%d",&T);
while(T--)
{
A.init();B.init();
scanf("%s",s+1);
n=strlen(s+1);
for(int i=1;i<=n;++i)A.a[i]=s[i]-96;
for(int i=1;i<=n;++i)B.a[n-i+1]=s[i]-96;
A.GetSA();A.Pre();B.GetSA();B.Pre();
for(int i=1;i<=n;++i)g[i]=f[i]=0;
for(int len=1;len<=n/2;++len)
{
for(int i=len,j=i+len;j<=n;i+=len,j+=len)
{
int x=min(A.lcp(i,j),len);
int y=min(B.lcp(n-i+2,n-j+2),len-1);
int t=x+y-len+1;
if(x+y>=len)
{
g[i-y]++;g[i-y+t]--;
f[j+x-t]++;f[j+x]--;
}
}
}
for(int i=1;i<=n;++i)g[i]+=g[i-1];
for(int i=1;i<=n;++i)f[i]+=f[i-1];
ll ans=0;
for(int i=1;i<n;++i)
ans+=1ll*f[i]*g[i+1];
printf("%lld\n",ans);
}
return 0;
}
【BZOJ4650】【NOI2016】优秀的拆分(后缀数组)的更多相关文章
- [NOI2016]优秀的拆分 后缀数组
题面:洛谷 题解: 因为对于原串的每个长度不一定等于len的拆分而言,如果合法,它将只会被对应的子串统计贡献. 所以子串这个限制相当于是没有的. 所以我们只需要对于每个位置i求出f[i]表示以i为开头 ...
- BZOJ.4650.[NOI2016]优秀的拆分(后缀数组 思路)
BZOJ 洛谷 令\(st[i]\)表示以\(i\)为开头有多少个\(AA\)这样的子串,\(ed[i]\)表示以\(i\)结尾有多少个\(AA\)这样的子串.那么\(Ans=\sum_{i=1}^{ ...
- UOJ #219 BZOJ 4650 luogu P1117 [NOI2016]优秀的拆分 (后缀数组、ST表)
连NOI Day1T1都不会做...看了题解都写不出来还要抄Claris的代码.. 题目链接: (luogu)https://www.luogu.org/problemnew/show/P1117 ( ...
- BZOJ 4650 [Noi2016]优秀的拆分 ——后缀数组
我们只需要统计在某一个点开始的形如$AA$字符串个数,和结束的个数相乘求和. 首先枚举循环节的长度L.即$\mid (A) \mid=L$ 然后肯定会经过s[i]和[i+L]至少两个点. 然后我们可以 ...
- [UOJ#219][BZOJ4650][Noi2016]优秀的拆分
[UOJ#219][BZOJ4650][Noi2016]优秀的拆分 试题描述 如果一个字符串可以被拆分为 AABBAABB 的形式,其中 A 和 B 是任意非空字符串,则我们称该字符串的这种拆分是优秀 ...
- [NOI2016]优秀的拆分(SA数组)
[NOI2016]优秀的拆分 题目描述 如果一个字符串可以被拆分为 \(AABB\) 的形式,其中 A和 B是任意非空字符串,则我们称该字符串的这种拆分是优秀的. 例如,对于字符串 \(aabaaba ...
- BZOJ4650 [NOI2016]优秀的拆分 【后缀数组】
题目 如果一个字符串可以被拆分为 AABBAABB 的形式,其中 AA 和 BB 是任意非空字符串,则我们称该字符串的这种拆 分是优秀的.例如,对于字符串 aabaabaa,如果令 A=aabA=aa ...
- bzoj千题计划317:bzoj4650: [Noi2016]优秀的拆分(后缀数组+差分)
https://www.lydsy.com/JudgeOnline/problem.php?id=4650 如果能够预处理出 suf[i] 以i结尾的形式为AA的子串个数 pre[i] 以i开头的形式 ...
- UOJ#219. 【NOI2016】优秀的拆分 [后缀数组 ST表]
#219. [NOI2016]优秀的拆分 题意:求有多少AABB样子的子串,拆分不同的同一个子串算多个 一开始一直想直接求,并不方便 然后看了一眼Claris的题解的第一行就有思路了 如果分开,求\( ...
- UOJ#219/BZOJ4650 [NOI2016]优秀的拆分 字符串 SA ST表
原文链接http://www.cnblogs.com/zhouzhendong/p/9025092.html 题目传送门 - UOJ#219 (推荐,题面清晰) 题目传送门 - BZOJ4650 题意 ...
随机推荐
- 多路复用select
多路复用I/O:一个执行体监视多个文件描述符对象的状态是否改变,一旦改变通知其他执行体来实现. 基本思想: 1. 先构造一张有关描述符的表,然后调用一个函数,当这些文件描述符中的一个或者多个已准备好进 ...
- [Python Study Notes] 编程仪式感的Hello World!
学习还是要有一点仪式感的,学单片机第一步,点个灯:学编程第一步,hello world! C:\Users\Liu>python Python 3.6.4 (v3.6.4:d48eceb, De ...
- 对TCP三次握手四次分手还不清楚的速度进,超简单解析,明白了就很好记!
关于TCP三次握手四次分手,之前看资料解释的都很笼统,很多地方都不是很明白,所以很难记,前几天看的一个博客豁然开朗,可惜现在找不到了.现在把之前的疑惑总结起来,方便一下大家. 先上个TCP三次握手和四 ...
- bzoj 1814 Ural 1519 Formula 1 插头DP
1814: Ural 1519 Formula 1 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 942 Solved: 356[Submit][Sta ...
- java线程优先级
java的线程优先级分为1-10 这10个等级 1为最强,最优先 10为最弱 如果大于10或者小于1则会抛异常 源代码为: public final void setPriority(int newP ...
- 基于WebSocketSharp 的IM 简单实现
websocket-sharp 是一个websocket的C#实现,支持.net 3.5及以上来开发服务端或者客户端.本文主要介绍用websocket-sharp来做服务端.JavaScript做客户 ...
- 深入研究Sphinx的底层原理和高级使用
深入研究Sphinx的底层原理和高级使用
- Ajax检测用户名是否已经注册
程序功能 当用户名输入完成(即用户名输入框失去焦点),利用Ajax检测用户名是否已经注册! 实现过程 利用Ajax向CheckUserServlet发送请求,判断该用户名是否可用.这里只是为了演示Aj ...
- POJ - 1062 昂贵的聘礼 Dijkstra
思路:构造最短路模型,抽象出来一个源点,这个源点到第i个点的费用就是price[i],然后就能抽象出图来,终点是1. 任意两个人之间都有等级限制,就枚举所有最低等级限制,然后将不再区间[min_lev ...
- MongoDB的DBREF 使用.
首先要记一下根据 DBREF 的ObjectId 以及根据 ref 集合为条件查询问题. 在不同的可视化客户端里面显示的问题. //某客户端显示这样,直接CMD查询也是这样显示.这样我无法看懂find ...