【BZOJ4650】【NOI2016】优秀的拆分(后缀数组)

题面

BZOJ

Uoj

题解

如果我们知道以某个位置为开始/结尾的\(AA\)串的个数

那就直接做一下乘法就好

这个怎么求?

枚举一个位置

枚举串的长度

直接暴力算就好啦

至于是否可行,用\(SA\)求\(lcp\)就好啦

这样就是\(95\)分

NOI这么好拿部分分的???

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define MAX 35000
int x[MAX],y[MAX],t[MAX];
int SA[MAX],height[MAX],rk[MAX];
int lg[MAX],n,p[20][MAX],a[MAX];
char s[MAX];
int g[MAX],f[MAX],T;
bool cmp(int i,int j,int k){return y[i]==y[j]&&y[i+k]==y[j+k];}
void init()
{
memset(SA,0,sizeof(SA));
memset(height,0,sizeof(height));
memset(rk,0,sizeof(rk));
memset(x,0,sizeof(x));
memset(y,0,sizeof(y));
memset(t,0,sizeof(t));
memset(a,0,sizeof(a));
}
void GetSA()
{
int m=50;
for(int i=1;i<=n;++i)t[x[i]=a[i]]++;
for(int i=1;i<=m;++i)t[i]+=t[i-1];
for(int i=n;i>=1;--i)SA[t[x[i]]--]=i;
for(int k=1;k<=n;k<<=1)
{
int p=0;
for(int i=n-k+1;i<=n;++i)y[++p]=i;
for(int i=1;i<=n;++i)if(SA[i]>k)y[++p]=SA[i]-k;
for(int i=0;i<=m;++i)t[i]=0;
for(int i=1;i<=n;++i)t[x[y[i]]]++;
for(int i=1;i<=m;++i)t[i]+=t[i-1];
for(int i=n;i>=1;--i)SA[t[x[y[i]]]--]=y[i];
swap(x,y);
x[SA[1]]=p=1;
for(int i=2;i<=n;++i)
x[SA[i]]=cmp(SA[i],SA[i-1],k)?p:++p;
if(p>=n)break;
m=p;
}
for(int i=1;i<=n;++i)rk[SA[i]]=i;
for(int i=1,j=0;i<=n;++i)
{
if(j)--j;
while(a[i+j]==a[SA[rk[i]-1]+j])++j;
height[rk[i]]=j;
}
}
void Pre()
{
memset(p,63,sizeof(p));
for(int i=1;i<=n;++i)p[0][i]=height[i];
for(int j=1;j<15;++j)
for(int i=1;i<=n;++i)
p[j][i]=min(p[j-1][i],p[j-1][i+(1<<(j-1))]);
}
int Query(int i,int j)
{
return min(p[lg[j-i+1]][i],p[lg[j-i+1]][j-(1<<lg[j-i+1])+1]);
}
int lcp(int i,int j)
{
int l=min(rk[i],rk[j])+1,r=max(rk[i],rk[j]);
return Query(l,r);
}
int main()
{
for(int i=2;i<=30000;++i)lg[i]=lg[i>>1]+1;
scanf("%d",&T);
while(T--)
{
init();
scanf("%s",s+1);
n=strlen(s+1);
for(int i=1;i<=n;++i)a[i]=s[i]-96;
GetSA();Pre();
for(int i=1;i<=n;++i)
{
g[i]=0;
for(int l=1;l+l+i-1<=n;++l)
if(lcp(i,i+l)>=l)g[i]++;
}
for(int i=2;i<=n;++i)
{
f[i]=0;
for(int l=1;i-l-l+1>0;++l)
if(lcp(i-l-l+1,i-l+1)>=l)f[i]++;
}
int ans=0;
for(int i=1;i<n;++i)
ans+=f[i]*g[i+1];
printf("%d\n",ans);
}
return 0;
}

\(95\)分的暴力太显然了。。

原来\(NOI\)都是这样送分???

为什么NOIP 没有这么好的福利


想想怎么优化吧。。。

肯定不能枚举长度之后再暴力算每一个位置

那么,我们要考虑一个方法,

可以一次性算出连续的位置

想想我们怎么求\(AA\)这种形式??

计算\(lcp(i,i+len)>=len\)是否成立

但是,如果\(lcp(i,i+len)>=len\)

我们就会发现,有一段区间内都是有满足条件的子串

所以我们可以一起计算

现在仔细思考怎么算

因为每次是\(i\)和\(i+len\)

所以我们只要枚举位置是\(len\)的倍数的地方就好

旁边的地方我们要想办法算出来

第一个,是向后如果可以增加的话

\(lcp(i,i+len)>=L\)我就会获得向后的一段连续区间

如果只算向后,会忽略掉向前的一段

所以再算一下\(lcs(i,i+len)\)这段,这两边拼起来

如果满足条件,证明这一段区间都是可行的

这样就可以差分全部\(+1\)

如果重复的部分够多

这样算可能会影响到别的块里面

所以要强制只在自己这一段里面算

具体的实现看代码啦

 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define MAX 35000
int lg[MAX],n;
char s[MAX];
int g[MAX],f[MAX],T;
struct SA
{
int p[20][MAX],a[MAX];
int x[MAX],y[MAX],t[MAX];
int SA[MAX],height[MAX],rk[MAX];
bool cmp(int i,int j,int k){return y[i]==y[j]&&y[i+k]==y[j+k];}
void init()
{
memset(SA,0,sizeof(SA));
memset(height,0,sizeof(height));
memset(rk,0,sizeof(rk));
memset(x,0,sizeof(x));
memset(y,0,sizeof(y));
memset(t,0,sizeof(t));
memset(a,0,sizeof(a));
}
void GetSA()
{
int m=50;
for(int i=1;i<=n;++i)t[x[i]=a[i]]++;
for(int i=1;i<=m;++i)t[i]+=t[i-1];
for(int i=n;i>=1;--i)SA[t[x[i]]--]=i;
for(int k=1;k<=n;k<<=1)
{
int p=0;
for(int i=n-k+1;i<=n;++i)y[++p]=i;
for(int i=1;i<=n;++i)if(SA[i]>k)y[++p]=SA[i]-k;
for(int i=0;i<=m;++i)t[i]=0;
for(int i=1;i<=n;++i)t[x[y[i]]]++;
for(int i=1;i<=m;++i)t[i]+=t[i-1];
for(int i=n;i>=1;--i)SA[t[x[y[i]]]--]=y[i];
swap(x,y);
x[SA[1]]=p=1;
for(int i=2;i<=n;++i)
x[SA[i]]=cmp(SA[i],SA[i-1],k)?p:++p;
if(p>=n)break;
m=p;
}
for(int i=1;i<=n;++i)rk[SA[i]]=i;
for(int i=1,j=0;i<=n;++i)
{
if(j)--j;
while(a[i+j]==a[SA[rk[i]-1]+j])++j;
height[rk[i]]=j;
}
}
void Pre()
{
memset(p,63,sizeof(p));
for(int i=1;i<=n;++i)p[0][i]=height[i];
for(int j=1;j<15;++j)
for(int i=1;i<=n;++i)
p[j][i]=min(p[j-1][i],p[j-1][i+(1<<(j-1))]);
}
int Query(int i,int j)
{
return min(p[lg[j-i+1]][i],p[lg[j-i+1]][j-(1<<lg[j-i+1])+1]);
}
int lcp(int i,int j)
{
int l=min(rk[i],rk[j])+1,r=max(rk[i],rk[j]);
return Query(l,r);
}
}A,B;
int main()
{
for(int i=2;i<=30000;++i)lg[i]=lg[i>>1]+1;
scanf("%d",&T);
while(T--)
{
A.init();B.init();
scanf("%s",s+1);
n=strlen(s+1);
for(int i=1;i<=n;++i)A.a[i]=s[i]-96;
for(int i=1;i<=n;++i)B.a[n-i+1]=s[i]-96;
A.GetSA();A.Pre();B.GetSA();B.Pre();
for(int i=1;i<=n;++i)g[i]=f[i]=0;
for(int len=1;len<=n/2;++len)
{
for(int i=len,j=i+len;j<=n;i+=len,j+=len)
{
int x=min(A.lcp(i,j),len);
int y=min(B.lcp(n-i+2,n-j+2),len-1);
int t=x+y-len+1;
if(x+y>=len)
{
g[i-y]++;g[i-y+t]--;
f[j+x-t]++;f[j+x]--;
}
}
} for(int i=1;i<=n;++i)g[i]+=g[i-1];
for(int i=1;i<=n;++i)f[i]+=f[i-1];
ll ans=0;
for(int i=1;i<n;++i)
ans+=1ll*f[i]*g[i+1];
printf("%lld\n",ans);
}
return 0;
}

【BZOJ4650】【NOI2016】优秀的拆分(后缀数组)的更多相关文章

  1. [NOI2016]优秀的拆分 后缀数组

    题面:洛谷 题解: 因为对于原串的每个长度不一定等于len的拆分而言,如果合法,它将只会被对应的子串统计贡献. 所以子串这个限制相当于是没有的. 所以我们只需要对于每个位置i求出f[i]表示以i为开头 ...

  2. BZOJ.4650.[NOI2016]优秀的拆分(后缀数组 思路)

    BZOJ 洛谷 令\(st[i]\)表示以\(i\)为开头有多少个\(AA\)这样的子串,\(ed[i]\)表示以\(i\)结尾有多少个\(AA\)这样的子串.那么\(Ans=\sum_{i=1}^{ ...

  3. UOJ #219 BZOJ 4650 luogu P1117 [NOI2016]优秀的拆分 (后缀数组、ST表)

    连NOI Day1T1都不会做...看了题解都写不出来还要抄Claris的代码.. 题目链接: (luogu)https://www.luogu.org/problemnew/show/P1117 ( ...

  4. BZOJ 4650 [Noi2016]优秀的拆分 ——后缀数组

    我们只需要统计在某一个点开始的形如$AA$字符串个数,和结束的个数相乘求和. 首先枚举循环节的长度L.即$\mid (A) \mid=L$ 然后肯定会经过s[i]和[i+L]至少两个点. 然后我们可以 ...

  5. [UOJ#219][BZOJ4650][Noi2016]优秀的拆分

    [UOJ#219][BZOJ4650][Noi2016]优秀的拆分 试题描述 如果一个字符串可以被拆分为 AABBAABB 的形式,其中 A 和 B 是任意非空字符串,则我们称该字符串的这种拆分是优秀 ...

  6. [NOI2016]优秀的拆分(SA数组)

    [NOI2016]优秀的拆分 题目描述 如果一个字符串可以被拆分为 \(AABB\) 的形式,其中 A和 B是任意非空字符串,则我们称该字符串的这种拆分是优秀的. 例如,对于字符串 \(aabaaba ...

  7. BZOJ4650 [NOI2016]优秀的拆分 【后缀数组】

    题目 如果一个字符串可以被拆分为 AABBAABB 的形式,其中 AA 和 BB 是任意非空字符串,则我们称该字符串的这种拆 分是优秀的.例如,对于字符串 aabaabaa,如果令 A=aabA=aa ...

  8. bzoj千题计划317:bzoj4650: [Noi2016]优秀的拆分(后缀数组+差分)

    https://www.lydsy.com/JudgeOnline/problem.php?id=4650 如果能够预处理出 suf[i] 以i结尾的形式为AA的子串个数 pre[i] 以i开头的形式 ...

  9. UOJ#219. 【NOI2016】优秀的拆分 [后缀数组 ST表]

    #219. [NOI2016]优秀的拆分 题意:求有多少AABB样子的子串,拆分不同的同一个子串算多个 一开始一直想直接求,并不方便 然后看了一眼Claris的题解的第一行就有思路了 如果分开,求\( ...

  10. UOJ#219/BZOJ4650 [NOI2016]优秀的拆分 字符串 SA ST表

    原文链接http://www.cnblogs.com/zhouzhendong/p/9025092.html 题目传送门 - UOJ#219 (推荐,题面清晰) 题目传送门 - BZOJ4650 题意 ...

随机推荐

  1. nginx+tomcat单个域名及多个域名配置

    同步首发:http://www.yuanrengu.com/index.php/20171130.html 项目开发接近尾声,开始着手在生产环境部署项目,开发阶段部署项目都没用nginx.项目是采用S ...

  2. Python基础——for/while循环

    Python版本:3.6.2  操作系统:Windows  作者:SmallWZQ 上学期间,常常遇到这样的情景:为了惩罚学生,老师会说:"XXX,你先去操场上跑10圈再回来继续反省.&qu ...

  3. 高并发WEB网站优化方案

    一.什么是高并发在互联网时代,所讲的并发.高并发,通常是指并发访问,也就是在某个时间点,有多少个访问同时到来.比如,百度首页同时有1000个人访问,那么也就是并发为1000.通常一个系统的日PV在千万 ...

  4. POJ - 1733 Parity game 种类并查集+离散化

    思路:d(i, j)表示区间(i, j]的1的个数的奇偶性.输入最多共有5000*2个点,需要离散化处理一下.剩下的就是并查集判冲突. AC代码 #include <cstdio> #in ...

  5. HDU - 1495 bfs [kuangbin带你飞]专题一

    模拟倒水的过程,每次可以把第i个杯子的水向第j个杯子里面倒,这可能出现新的状态,不停的更新状态,指导某两个杯子的水等于S/2说明找到答案,如果所有状态搜索完毕仍然不能均分,则退出. 注意:如果S是奇数 ...

  6. 编写React组件的最佳实践

    此文翻译自这里. 当我刚开始写React的时候,我看过很多写组件的方法.一百篇教程就有一百种写法.虽然React本身已经成熟了,但是如何使用它似乎还没有一个"正确"的方法.所以我( ...

  7. SpringBoot+gradle+idea实现热部署和热加载

    前言 因为之前使用myeclipes的同学就知道,在使用myeclipes的时候,java文件或者jsp文件写完之后会被直接热加载到部署的容器中,从而在开发的时候,不同经常去重启项目,从而达到了增加开 ...

  8. 《Java编程思想》读书笔记

    前言 这个月一直没更新,就是一直在读这本<Java编程思想>,这本书可以在Java业界被传神的一本书,无论谁谈起这本书都说好,不管这个人是否真的读过这本书,都说啊,这本书很好.然后再看这边 ...

  9. Unix代码段和数据段

    关于UNIX系统代码段和数据段分开的目的:方便编程. 1)代码段:代码段是用来存放可执行文件的操作指令,也就是说是它是可执行程序在内存中的镜像.代码段需要防止在运行时被非法修改,所以只准许读取操作,而 ...

  10. (!(~+[])+{})[--[~+""][+[]]*[~+[]] + ~~!+[]]+({}+[])[[~!+[]]*~+[]]一行js代码的原理分析

    再说这行代码之前,咱们先来预习一下知识. 我们都知道计算机操作系统分为32位或者64位.那么这个32位或64位指的是什么意思呢?其实,要想解释它并不难,其实这就是计算机处理数据的机制,32位表示计算机 ...