Python Face Detect Offline
python版本 3.7.0
1、 安装 cmake
pip install cmake
2、安装 boost
pip install boost
3、安装 dlib
pip install dlib
4、安装 face_recognition
pip install face_recognition
5、验证
face_recognition 本地模型路径 要识别图片路径
输出:文件名 识别的人名
注意:文件名以人名命名
6、寻找人脸位置
face_detection “路径”
输出:人脸像素坐标
7、调整灵敏度
face_recognition –tolerance 灵敏度 本地模型路径 要识别图片路径
注:默认0.6,识别度越低识别难度越高
8、计算每次面部距离
face_recognition –show-distance true 本地模型路径 要识别图片路径
9、只是想知道每张照片中人物的姓名,却不关心文件名,可以这样做:
face_recognition 本地模型路径 要识别图片路径 | cut -d ‘,’ -f2
10、加速识别
face_recognition –cpus 使用内核数 本地模型路径 要识别图片路径
使用四核识别:
face_recognition –cpus 4 本地模型路径 要识别图片路径
使用全部内核识别:
face_recognition –cpus -1 本地模型路径 要识别图片路径
11、自动查找图像中的所有面孔
import face_recognition
image = face_recognition.load_image_file(“吴京.jpg”)
face_locations = face_recognition.face_locations(image)
import face_recognition
import cv2
import numpy as np # This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the
# other example, but it includes some basic performance tweaks to make things run a lot faster:
# 1. Process each video frame at 1/4 resolution (though still display it at full resolution)
# 2. Only detect faces in every other frame of video. # PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
# OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
# specific demo. If you have trouble installing it, try any of the other demos that don't require it instead. # Get a reference to webcam #0 (the default one)
video_capture = cv2.VideoCapture(0) # Load a sample picture and learn how to recognize it.
obama_image = face_recognition.load_image_file("obama.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_image)[0] # Load a second sample picture and learn how to recognize it.
biden_image = face_recognition.load_image_file("biden.jpg")
biden_face_encoding = face_recognition.face_encodings(biden_image)[0] # Create arrays of known face encodings and their names
known_face_encodings = [
obama_face_encoding,
biden_face_encoding
]
known_face_names = [
"Barack Obama",
"Joe Biden"
] # Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True while True:
# Grab a single frame of video
ret, frame = video_capture.read() # Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1] # Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown" # # If a match was found in known_face_encodings, just use the first one.
# if True in matches:
# first_match_index = matches.index(True)
# name = known_face_names[first_match_index] # Or instead, use the known face with the smallest distance to the new face
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index] face_names.append(name) process_this_frame = not process_this_frame # Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4 # Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) # Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) # Display the resulting image
cv2.imshow('Video', frame) # Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break # Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()
彩蛋
import cv2
import threading
import face_recognition
import numpy as np
import os class camThread(threading.Thread):
def __init__(self, previewName, camID):
threading.Thread.__init__(self)
self.previewName = previewName
self.camID = camID
def run(self):
print("Starting " + self.previewName)
camPreview(self.previewName, self.camID) def camPreview(previewName, camID):
cv2.namedWindow(previewName)
video_capture = cv2.VideoCapture(camID)
if video_capture.isOpened():
rval, frame = video_capture.read()
else:
rval = False known_face_encodings = []
known_face_names = [] imagelist = os.listdir('./face/')
for imagename in imagelist:
image = face_recognition.load_image_file("./face/"+imagename)
face_encoding = face_recognition.face_encodings(image)[0]
known_face_encodings.append(face_encoding)
subname=imagename.split('.')[0]
known_face_names.append(subname)
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True while rval:
#cv2.imshow(previewName, frame)
rval, frame = video_capture.read()
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
rgb_small_frame = small_frame[:, :, ::-1]
if process_this_frame:
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) face_names = []
for face_encoding in face_encodings:
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown" face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index] face_names.append(name) process_this_frame = not process_this_frame for (top, right, bottom, left), name in zip(face_locations, face_names):
top *= 4
right *= 4
bottom *= 4
left *= 4 cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) cv2.imshow(previewName, frame) if cv2.waitKey(1) & 0xFF == ord('q'):
break
cv2.destroyWindow(previewName) thread1 = camThread("Camera 1", 0)
thread2 = camThread("Camera 2", 1) thread1.start()
thread2.start()
Python Face Detect Offline的更多相关文章
- python flask detect browser language
python flask detect browser language No problem. We won't show you that ad again. Why didn't you l ...
- appium+python自动化40-adb offline(5037端口被占)
前言 adb连手机的时候经常会出现offline的情况,一般杀掉adb,然后重启adb可以解决. 如果发现不管怎么重启adb都连不上,一直出现offlie的情况,这个时候很大可能就是adb的5037端 ...
- appium+python自动化-adb offline(5037端口被占)
前言 adb连手机的时候经常会出现offline的情况,一般杀掉adb,然后重启adb可以解决. 如果发现不管怎么重启adb都连不上,一直出现offlie的情况,这个时候很大可能就是adb的5037端 ...
- [Python]pip install offline 如何离线pip安装包
痛点:目标机器无法连接公网,但是能使用rz.sz传输文件 思路:在能上网的机器是使用pip下载相关依赖包,然后传输至目标机器,进行安装 0. Install pip: http://pip-cn.re ...
- Runtime.getRuntime().exec()实现Java调用python程序
使用Runtime.getRuntime().exec()来实现Java调用python,调用代码如下所示: import java.io.BufferedReader; import java.io ...
- 【python】使用plotly生成图表数据
安装 在 ubuntu 环境下,安装 plotly 很简单 python 版本2.7+ pip install plotly 绘图 在 plotly 网站注册后,可以直接将生成的图片保存到网站上,便于 ...
- Linux下monit进程管理操作梳理
Monit对运维人员来说可谓神器,它是一款功能非常丰富的进程.文件.目录和设备的监测工具,用于Unix平台.它可以自动修复那些已经停止运作的程序,特使适合处理那些由于多种原因导致的软件错误.Monit ...
- github上Devstack的一些变动,截至8.20
从github下直接clone下来的代码在执行之前须要对一些文件进行改动,否则会出现关于REQUIREMENTS的错误 说明:代码前边是"-"号的,须要删除,代码前边是" ...
- 【Python项目】使用Face++的人脸识别detect API进行本地图片情绪识别并存入excel
准备工作 首先,需要在Face++的主页注册一个账号,在控制台去获取API Key和API Secret. 然后在本地文件夹准备好要进行情绪识别的图片/相片. 代码 介绍下所使用的第三方库 ——url ...
随机推荐
- 关于ApiCloud的Superwebview在androidstudio中集成微信支付模块,提示模块未绑定的问题
前两天ApiCloud项目集成了微信支付模块,android端今天也将ApiCloud官方的uzWxPay.jar集成了.在编译玩测试的时候提示wxPay模块为绑定!我的项目是使用ApiCloud推出 ...
- Spring Cloud Alibaba基础教程:Sentinel使用Apollo存储规则
上一篇我们介绍了如何通过Nacos的配置功能来存储限流规则.Apollo是国内用户非常多的配置中心,所以,今天我们继续说说Spring Cloud Alibaba Sentinel中如何将流控规则存储 ...
- c# String ,String[] 和 List<String>之间的转换
C#对字符串进行处理时,经常需要进行String,String[]和List<String>之间的转换 本文分析一下它们的差异和转换 一. 1. String > String[] ...
- Linux journalctl命令
在Systemd出现之前,Linux系统及各应用的日志都是分别管理的,Systemd开始统一管理了所有Unit的启动日志,这样带来的好处就是可以只用一个 journalctl命令,查看所有内核和应用的 ...
- PHP遍历文件夹下所有文件
不论是面试还是正常工作需要都会用到遍历文件夹下的所有文件,今天就记录一下笔记.废话不多说直接上代码: <?php /** * 遍历当前文件夹展示所有的文件和目录 */ function dirL ...
- Mybatis实现部门表增删改查以及排序
废话不说,直接开门见山! 需要在WebContent下的lib下导入两个包 mybatis-3.2.5.jar ojdbc6.jar package com.xdl.entity; import ja ...
- IGP和BGP路由协议配合降低非核心路由器的路由容量的实验与总结
IGP和BGP路由协议配合降低非核心路由器的路由容量的实验与总结 一.结论 通过eBGP协议,可以显著降低对非核心路由器的路由容量要求,因为核心路由器的数量明显少于非核心路由器,所以,通过此措施既可以 ...
- 章节十、6-CSS---用CSS 定位子节点
以该网址为例(https://learn.letskodeit.com/p/practice) 一.通过子节点定位元素 1.例如我们需要定位这个table表格 2.当我们通过table标签直接定位时, ...
- 从0开始的Python学习017Python标准库
简介 Python标准库使随着Python附带安装的,它包含很多有用的模块.所以对一个Python开发者来说,熟悉Python标准库是十分重要的.通过这些库中的模块,可以解决你的大部分问题. sys模 ...
- linux的自有(内置)服务
运行模式(运行级别) 在linux中存在一个进程,init(initialize初始化)进程号为1 ,该进程对应一个配置文件inittab 文件路径为/etc/inittab centOS6.5存在7 ...