python版本 3.7.0 

1、 安装 cmake

pip install cmake 

2、安装 boost

pip install boost 

3、安装 dlib

pip install dlib 

4、安装 face_recognition

pip install face_recognition 

5、验证

face_recognition 本地模型路径 要识别图片路径 
输出:文件名 识别的人名 

注意:文件名以人名命名 

6、寻找人脸位置

face_detection “路径” 
输出:人脸像素坐标 

7、调整灵敏度

face_recognition –tolerance 灵敏度 本地模型路径 要识别图片路径 
注:默认0.6,识别度越低识别难度越高 

8、计算每次面部距离

face_recognition –show-distance true 本地模型路径 要识别图片路径 

9、只是想知道每张照片中人物的姓名,却不关心文件名,可以这样做:

face_recognition 本地模型路径 要识别图片路径 | cut -d ‘,’ -f2

10、加速识别

face_recognition –cpus 使用内核数 本地模型路径 要识别图片路径 
使用四核识别: 
face_recognition –cpus 4 本地模型路径 要识别图片路径 
 
使用全部内核识别: 
face_recognition –cpus -1 本地模型路径 要识别图片路径

11、自动查找图像中的所有面孔

import face_recognition

image = face_recognition.load_image_file(“吴京.jpg”) 
face_locations = face_recognition.face_locations(image)

import face_recognition
import cv2
import numpy as np # This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the
# other example, but it includes some basic performance tweaks to make things run a lot faster:
# 1. Process each video frame at 1/4 resolution (though still display it at full resolution)
# 2. Only detect faces in every other frame of video. # PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
# OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
# specific demo. If you have trouble installing it, try any of the other demos that don't require it instead. # Get a reference to webcam #0 (the default one)
video_capture = cv2.VideoCapture(0) # Load a sample picture and learn how to recognize it.
obama_image = face_recognition.load_image_file("obama.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_image)[0] # Load a second sample picture and learn how to recognize it.
biden_image = face_recognition.load_image_file("biden.jpg")
biden_face_encoding = face_recognition.face_encodings(biden_image)[0] # Create arrays of known face encodings and their names
known_face_encodings = [
obama_face_encoding,
biden_face_encoding
]
known_face_names = [
"Barack Obama",
"Joe Biden"
] # Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True while True:
# Grab a single frame of video
ret, frame = video_capture.read() # Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1] # Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown" # # If a match was found in known_face_encodings, just use the first one.
# if True in matches:
# first_match_index = matches.index(True)
# name = known_face_names[first_match_index] # Or instead, use the known face with the smallest distance to the new face
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index] face_names.append(name) process_this_frame = not process_this_frame # Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4 # Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) # Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) # Display the resulting image
cv2.imshow('Video', frame) # Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break # Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()  

彩蛋

import cv2
import threading
import face_recognition
import numpy as np
import os class camThread(threading.Thread):
def __init__(self, previewName, camID):
threading.Thread.__init__(self)
self.previewName = previewName
self.camID = camID
def run(self):
print("Starting " + self.previewName)
camPreview(self.previewName, self.camID) def camPreview(previewName, camID):
cv2.namedWindow(previewName)
video_capture = cv2.VideoCapture(camID)
if video_capture.isOpened():
rval, frame = video_capture.read()
else:
rval = False known_face_encodings = []
known_face_names = [] imagelist = os.listdir('./face/')
for imagename in imagelist:
image = face_recognition.load_image_file("./face/"+imagename)
face_encoding = face_recognition.face_encodings(image)[0]
known_face_encodings.append(face_encoding)
subname=imagename.split('.')[0]
known_face_names.append(subname)
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True while rval:
#cv2.imshow(previewName, frame)
rval, frame = video_capture.read()
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
rgb_small_frame = small_frame[:, :, ::-1]
if process_this_frame:
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) face_names = []
for face_encoding in face_encodings:
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown" face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index] face_names.append(name) process_this_frame = not process_this_frame for (top, right, bottom, left), name in zip(face_locations, face_names):
top *= 4
right *= 4
bottom *= 4
left *= 4 cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) cv2.imshow(previewName, frame) if cv2.waitKey(1) & 0xFF == ord('q'):
break
cv2.destroyWindow(previewName) thread1 = camThread("Camera 1", 0)
thread2 = camThread("Camera 2", 1) thread1.start()
thread2.start()

Python Face Detect Offline的更多相关文章

  1. python flask detect browser language

    python flask detect browser language   No problem. We won't show you that ad again. Why didn't you l ...

  2. appium+python自动化40-adb offline(5037端口被占)

    前言 adb连手机的时候经常会出现offline的情况,一般杀掉adb,然后重启adb可以解决. 如果发现不管怎么重启adb都连不上,一直出现offlie的情况,这个时候很大可能就是adb的5037端 ...

  3. appium+python自动化-adb offline(5037端口被占)

    前言 adb连手机的时候经常会出现offline的情况,一般杀掉adb,然后重启adb可以解决. 如果发现不管怎么重启adb都连不上,一直出现offlie的情况,这个时候很大可能就是adb的5037端 ...

  4. [Python]pip install offline 如何离线pip安装包

    痛点:目标机器无法连接公网,但是能使用rz.sz传输文件 思路:在能上网的机器是使用pip下载相关依赖包,然后传输至目标机器,进行安装 0. Install pip: http://pip-cn.re ...

  5. Runtime.getRuntime().exec()实现Java调用python程序

    使用Runtime.getRuntime().exec()来实现Java调用python,调用代码如下所示: import java.io.BufferedReader; import java.io ...

  6. 【python】使用plotly生成图表数据

    安装 在 ubuntu 环境下,安装 plotly 很简单 python 版本2.7+ pip install plotly 绘图 在 plotly 网站注册后,可以直接将生成的图片保存到网站上,便于 ...

  7. Linux下monit进程管理操作梳理

    Monit对运维人员来说可谓神器,它是一款功能非常丰富的进程.文件.目录和设备的监测工具,用于Unix平台.它可以自动修复那些已经停止运作的程序,特使适合处理那些由于多种原因导致的软件错误.Monit ...

  8. github上Devstack的一些变动,截至8.20

    从github下直接clone下来的代码在执行之前须要对一些文件进行改动,否则会出现关于REQUIREMENTS的错误 说明:代码前边是"-"号的,须要删除,代码前边是" ...

  9. 【Python项目】使用Face++的人脸识别detect API进行本地图片情绪识别并存入excel

    准备工作 首先,需要在Face++的主页注册一个账号,在控制台去获取API Key和API Secret. 然后在本地文件夹准备好要进行情绪识别的图片/相片. 代码 介绍下所使用的第三方库 ——url ...

随机推荐

  1. Ocelot-基于.NET Core的开源网关实现

    写在前面 API网关是系统内部服务暴露在外部的一个访问入口,类似于代理服务器,就像一个公司的门卫承担着寻址.限制进入.安全检查.位置引导等工作,我们可以形象的用下图来表示: 外部设备需要访问内部系统服 ...

  2. Python3+Selenium2完整的自动化测试实现之旅(一):自动化测试环境搭建

    1     环境搭建准备 (1)    下载Python3版本的安装包,直接官网下载即可:Python官网:https://www.python.org/ (2)    下载Python的基础工具包p ...

  3. 设计模式系列13:模板方法模式(Template Method Pattern)

    定义 定义一个操作中的算法的骨架,而将一些步骤延迟到子类中.模板方法使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤.    --<设计模式GoF> UML类图 使用场景 有 ...

  4. 山西大同大学教务处学生端--送给学弟,学妹的礼物,可在PC端,手机端操作

    解决问题:大同大学教务处官网学生端口一进去就卡住了,点上面一行的菜单无响应 转眼已是四年,想想自己大学即将结束,不由得让人感慨啊.这才刚开学几天,我就听到有同学在因为补考,选课的事情发愁.学校官方的教 ...

  5. Django常见问题

    1.什么是中间件? 中间件是介于request与response处理之间的一道处理过程,相对比较轻量级,并且在全局上改变django的输入与输出. 中间件一般做认证或批量请求处理,django中的中间 ...

  6. wordpress 角色权限

    自带多媒体库上传权限:edit_other_pages

  7. Nginx Windows详细安装部署教程

    一.Nginx简介 Nginx (engine x) 是一个高性能的HTTP和反向代理服务器,也是一个IMAP/POP3/SMTP服务器.Nginx是由伊戈尔·赛索耶夫为俄罗斯访问量第二的Ramble ...

  8. Dynamics 365-OnPremise V9 安装系统要求

    Dynamics 365 V9 OnPremise发布之后,博主率真地直接下载安装,首先就遇到了操作系统不支持的问题,但是通过CRM安装报错提示,发现给的链接参考信息也不对. document的链接调 ...

  9. Android视频录制从不入门到入门系列教程(三)————视频方向

    运行Android视频录制从不入门到入门系列教程(二)————显示视频图像中的Demo后,我们应该能发现视频的方向是错误的. 由于Android中,Camera给我们的视频图片的原始方向是下图这个样子 ...

  10. java.lang.IllegalArgumentException: Called attach on a child which is not detached: ViewHolder

    转载请标明出处,维权必究:https://www.cnblogs.com/tangZH/p/10116298.html 在项目过程中出现了上述错误. 会出现这样的错误是在我使用: notifyItem ...