python版本 3.7.0 

1、 安装 cmake

pip install cmake 

2、安装 boost

pip install boost 

3、安装 dlib

pip install dlib 

4、安装 face_recognition

pip install face_recognition 

5、验证

face_recognition 本地模型路径 要识别图片路径 
输出:文件名 识别的人名 

注意:文件名以人名命名 

6、寻找人脸位置

face_detection “路径” 
输出:人脸像素坐标 

7、调整灵敏度

face_recognition –tolerance 灵敏度 本地模型路径 要识别图片路径 
注:默认0.6,识别度越低识别难度越高 

8、计算每次面部距离

face_recognition –show-distance true 本地模型路径 要识别图片路径 

9、只是想知道每张照片中人物的姓名,却不关心文件名,可以这样做:

face_recognition 本地模型路径 要识别图片路径 | cut -d ‘,’ -f2

10、加速识别

face_recognition –cpus 使用内核数 本地模型路径 要识别图片路径 
使用四核识别: 
face_recognition –cpus 4 本地模型路径 要识别图片路径 
 
使用全部内核识别: 
face_recognition –cpus -1 本地模型路径 要识别图片路径

11、自动查找图像中的所有面孔

import face_recognition

image = face_recognition.load_image_file(“吴京.jpg”) 
face_locations = face_recognition.face_locations(image)

import face_recognition
import cv2
import numpy as np # This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the
# other example, but it includes some basic performance tweaks to make things run a lot faster:
# 1. Process each video frame at 1/4 resolution (though still display it at full resolution)
# 2. Only detect faces in every other frame of video. # PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
# OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
# specific demo. If you have trouble installing it, try any of the other demos that don't require it instead. # Get a reference to webcam #0 (the default one)
video_capture = cv2.VideoCapture(0) # Load a sample picture and learn how to recognize it.
obama_image = face_recognition.load_image_file("obama.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_image)[0] # Load a second sample picture and learn how to recognize it.
biden_image = face_recognition.load_image_file("biden.jpg")
biden_face_encoding = face_recognition.face_encodings(biden_image)[0] # Create arrays of known face encodings and their names
known_face_encodings = [
obama_face_encoding,
biden_face_encoding
]
known_face_names = [
"Barack Obama",
"Joe Biden"
] # Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True while True:
# Grab a single frame of video
ret, frame = video_capture.read() # Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1] # Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown" # # If a match was found in known_face_encodings, just use the first one.
# if True in matches:
# first_match_index = matches.index(True)
# name = known_face_names[first_match_index] # Or instead, use the known face with the smallest distance to the new face
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index] face_names.append(name) process_this_frame = not process_this_frame # Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4 # Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) # Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) # Display the resulting image
cv2.imshow('Video', frame) # Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break # Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()  

彩蛋

import cv2
import threading
import face_recognition
import numpy as np
import os class camThread(threading.Thread):
def __init__(self, previewName, camID):
threading.Thread.__init__(self)
self.previewName = previewName
self.camID = camID
def run(self):
print("Starting " + self.previewName)
camPreview(self.previewName, self.camID) def camPreview(previewName, camID):
cv2.namedWindow(previewName)
video_capture = cv2.VideoCapture(camID)
if video_capture.isOpened():
rval, frame = video_capture.read()
else:
rval = False known_face_encodings = []
known_face_names = [] imagelist = os.listdir('./face/')
for imagename in imagelist:
image = face_recognition.load_image_file("./face/"+imagename)
face_encoding = face_recognition.face_encodings(image)[0]
known_face_encodings.append(face_encoding)
subname=imagename.split('.')[0]
known_face_names.append(subname)
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True while rval:
#cv2.imshow(previewName, frame)
rval, frame = video_capture.read()
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
rgb_small_frame = small_frame[:, :, ::-1]
if process_this_frame:
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) face_names = []
for face_encoding in face_encodings:
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown" face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index] face_names.append(name) process_this_frame = not process_this_frame for (top, right, bottom, left), name in zip(face_locations, face_names):
top *= 4
right *= 4
bottom *= 4
left *= 4 cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) cv2.imshow(previewName, frame) if cv2.waitKey(1) & 0xFF == ord('q'):
break
cv2.destroyWindow(previewName) thread1 = camThread("Camera 1", 0)
thread2 = camThread("Camera 2", 1) thread1.start()
thread2.start()

Python Face Detect Offline的更多相关文章

  1. python flask detect browser language

    python flask detect browser language   No problem. We won't show you that ad again. Why didn't you l ...

  2. appium+python自动化40-adb offline(5037端口被占)

    前言 adb连手机的时候经常会出现offline的情况,一般杀掉adb,然后重启adb可以解决. 如果发现不管怎么重启adb都连不上,一直出现offlie的情况,这个时候很大可能就是adb的5037端 ...

  3. appium+python自动化-adb offline(5037端口被占)

    前言 adb连手机的时候经常会出现offline的情况,一般杀掉adb,然后重启adb可以解决. 如果发现不管怎么重启adb都连不上,一直出现offlie的情况,这个时候很大可能就是adb的5037端 ...

  4. [Python]pip install offline 如何离线pip安装包

    痛点:目标机器无法连接公网,但是能使用rz.sz传输文件 思路:在能上网的机器是使用pip下载相关依赖包,然后传输至目标机器,进行安装 0. Install pip: http://pip-cn.re ...

  5. Runtime.getRuntime().exec()实现Java调用python程序

    使用Runtime.getRuntime().exec()来实现Java调用python,调用代码如下所示: import java.io.BufferedReader; import java.io ...

  6. 【python】使用plotly生成图表数据

    安装 在 ubuntu 环境下,安装 plotly 很简单 python 版本2.7+ pip install plotly 绘图 在 plotly 网站注册后,可以直接将生成的图片保存到网站上,便于 ...

  7. Linux下monit进程管理操作梳理

    Monit对运维人员来说可谓神器,它是一款功能非常丰富的进程.文件.目录和设备的监测工具,用于Unix平台.它可以自动修复那些已经停止运作的程序,特使适合处理那些由于多种原因导致的软件错误.Monit ...

  8. github上Devstack的一些变动,截至8.20

    从github下直接clone下来的代码在执行之前须要对一些文件进行改动,否则会出现关于REQUIREMENTS的错误 说明:代码前边是"-"号的,须要删除,代码前边是" ...

  9. 【Python项目】使用Face++的人脸识别detect API进行本地图片情绪识别并存入excel

    准备工作 首先,需要在Face++的主页注册一个账号,在控制台去获取API Key和API Secret. 然后在本地文件夹准备好要进行情绪识别的图片/相片. 代码 介绍下所使用的第三方库 ——url ...

随机推荐

  1. 关于ApiCloud的Superwebview在androidstudio中集成微信支付模块,提示模块未绑定的问题

    前两天ApiCloud项目集成了微信支付模块,android端今天也将ApiCloud官方的uzWxPay.jar集成了.在编译玩测试的时候提示wxPay模块为绑定!我的项目是使用ApiCloud推出 ...

  2. Spring Cloud Alibaba基础教程:Sentinel使用Apollo存储规则

    上一篇我们介绍了如何通过Nacos的配置功能来存储限流规则.Apollo是国内用户非常多的配置中心,所以,今天我们继续说说Spring Cloud Alibaba Sentinel中如何将流控规则存储 ...

  3. c# String ,String[] 和 List<String>之间的转换

    C#对字符串进行处理时,经常需要进行String,String[]和List<String>之间的转换 本文分析一下它们的差异和转换 一. 1. String > String[] ...

  4. Linux journalctl命令

    在Systemd出现之前,Linux系统及各应用的日志都是分别管理的,Systemd开始统一管理了所有Unit的启动日志,这样带来的好处就是可以只用一个 journalctl命令,查看所有内核和应用的 ...

  5. PHP遍历文件夹下所有文件

    不论是面试还是正常工作需要都会用到遍历文件夹下的所有文件,今天就记录一下笔记.废话不多说直接上代码: <?php /** * 遍历当前文件夹展示所有的文件和目录 */ function dirL ...

  6. Mybatis实现部门表增删改查以及排序

    废话不说,直接开门见山! 需要在WebContent下的lib下导入两个包 mybatis-3.2.5.jar ojdbc6.jar package com.xdl.entity; import ja ...

  7. IGP和BGP路由协议配合降低非核心路由器的路由容量的实验与总结

    IGP和BGP路由协议配合降低非核心路由器的路由容量的实验与总结 一.结论 通过eBGP协议,可以显著降低对非核心路由器的路由容量要求,因为核心路由器的数量明显少于非核心路由器,所以,通过此措施既可以 ...

  8. 章节十、6-CSS---用CSS 定位子节点

    以该网址为例(https://learn.letskodeit.com/p/practice) 一.通过子节点定位元素 1.例如我们需要定位这个table表格 2.当我们通过table标签直接定位时, ...

  9. 从0开始的Python学习017Python标准库

    简介 Python标准库使随着Python附带安装的,它包含很多有用的模块.所以对一个Python开发者来说,熟悉Python标准库是十分重要的.通过这些库中的模块,可以解决你的大部分问题. sys模 ...

  10. linux的自有(内置)服务

    运行模式(运行级别) 在linux中存在一个进程,init(initialize初始化)进程号为1 ,该进程对应一个配置文件inittab 文件路径为/etc/inittab centOS6.5存在7 ...