# !/usr/bin/python
# -*- coding:utf-8 -*- """
Re-implement kNN algorithm as a practice
使用该 kNN re-implement 的前提:
train data 的标签必须转成0,1,2,...的形式
""" # Author: 相忠良(Zhong-Liang Xiang) <ugoood@163.com>
# Finished at July 11th, 2017 import sys
from numpy import array
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets, cross_validation
from sklearn import neighbors ## Euclidean Distance
def euclidean(v1, v2):
v11 = np.mat(v1)
v22 = np.mat(v2)
return np.sqrt((v11 - v22) * ((v11 - v22).T))[0, 0] ## Cosin Distance
def cosdis(v1, v2):
return np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2)) ## load data
def load_data():
iris = datasets.load_iris()
return cross_validation.train_test_split(iris.data, iris.target, test_size=0.25, random_state=0) class MyKNeighborsClassifier:
predict_label = []
n_neighbors = 0
X_train = []
y_train = []
content = [] # 中间变量 def __init__(self, n_neighbors=20):
self.n_neighbors = n_neighbors
return def fit(self, X, y):
self.y_train = y
self.X_train = X def predict(self, X):
for item in X:
for sample in self.X_train:
self.content.append(euclidean(item, sample))
temp = []
i = 1
while (i <= self.n_neighbors):
index = np.argmin(self.content)
temp.append(y_train[index])
self.content[index] = sys.maxint
i += 1
self.predict_label.append(np.argmax(np.bincount(temp))) # 重要1,2
self.content = []
temp = []
return self.predict_label def score(self, X, y):
pass ## 测试用例
X_train, X_test, y_train, y_test = load_data() cls = MyKNeighborsClassifier()
cls.fit(X_train, y_train)
mine = cls.predict(X_test)
print 'my kNN: ', mine cls1 = neighbors.KNeighborsClassifier(n_neighbors=20, p=2)
cls1.fit(X_train, y_train)
sklearnkNN = cls1.predict(X_test)
print 'sklearn kNN: ', sklearnkNN
print mine == sklearnkNN
print mine == y_test '''
下面是编程过程中留下的经验
''' # 重要1: np.bincount(list)
# >>> a=[1,1,2,2,4]
# >>> print np.bincount(a)
# 结果为 [0 2 2 0 1] # 重要2: np.argmax(list)
# 返回最大值索引 # 重要3: 标识整数最大值
# >>> import sys
# >>> sys.maxint ## kNN 小示例
# def createDataset():
# group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]])
# labels = ['A', 'A', 'B', 'B']
# return group, labels
#
#
# dataset, labels = createDataset()
# fig = plt.figure()
# ax = fig.add_subplot(111)
# index = 0
# testdata = [0.2, 0.2]
#
# for point in dataset:
# if labels[index] == 'A':
# ax.scatter(point[0], point[1], c='blue', marker='o', s=300)
# else:
# ax.scatter(point[0], point[1], c='red', marker='^', s=300)
# index += 1
#
# ax.scatter(testdata[0], testdata[1], c='green', marker='^', s=300)
# plt.show()

重写轮子之 kNN的更多相关文章

  1. 重写轮子之 GaussionNB

    我仿照sk-learn 中 GaussionNB 的结构, 重写了该算法的轮子,命名为 MyGaussionNB, 如下: # !/usr/bin/python # -*- coding:utf-8 ...

  2. 重写轮子之 ID3

    这是半成品, 已完成了 fit() 部分, 形成了包含一棵完整树的 node 对象. 后续工作是需解析该 node对象, 完成 predict() 工作. # !/usr/bin/python # - ...

  3. 跟着大神重写的KNN 文档归类小工具

    ·背景 在知道KNN之前,楼主有时候会粗糙地做一些分类模型的计算.在拜读了Orisun大神[http://www.cnblogs.com/zhangchaoyang/articles/2162393. ...

  4. 【转】C# 重写WndProc 拦截 发送 系统消息 + windows消息常量值(1)

    C# 重写WndProc 拦截 发送 系统消息 + windows消息常量值(1) #region 截获消息        /// 截获消息  处理XP不能关机问题        protected ...

  5. Asp.net Mvc 请求是如何到达 MvcHandler的——UrlRoutingModule、MvcRouteHandler分析,并造个轮子

    这个是转载自:http://www.cnblogs.com/keyindex/archive/2012/08/11/2634005.html(那个比较容易忘记,希望博主不要生气的) 前言 本文假定读者 ...

  6. 拆解轮子之XRecyclerView

    简介 这个轮子是对RecyclerView的封装,主要完成了下拉刷新.上拉加载更多.RecyclerView头部.在我的Material Design学习项目中使用到了项目地址,感觉还不错.趁着毕业答 ...

  7. 跨平台技术实践案例: 用 reactxp 重写墨刀的移动端

    Authors:  Gao Cong, Perry Poon Illustrators:  Shena Bian April 20, 2019 重新编写,又一次,我们又一次重新编写了移动端应用和移动端 ...

  8. 星级评分原理 N次重写的分析

    使用的是雪碧图,用的软件是CSS Sprite Tools 第一次实现与分析: <!DOCTYPE html> <html> <head> <meta cha ...

  9. [18/11/29] 继承(extends)和方法的重写(override,不是重载)

    一.何为继承?(对原有类的扩充) 继承让我们更加容易实现类的扩展. 比如,我们定义了人类,再定义Boy类就只需要扩展人类即可.实现了代码的重用,不用再重新发明轮子(don’t  reinvent  w ...

随机推荐

  1. Spring Security入门(2-3)Spring Security 的运行原理 3

    关键组件关系 FilterSecurityInterceptor--- authenticationManager --- UserDetailService--- accessDecisionMan ...

  2. C#配置文件config的使用

    做程序的时候总会有一些参数,可能会调整,这时候一般情况下我都会写在配置文件里,这样方便一点. 配置文件的读取 <?xml version="1.0" encoding=&qu ...

  3. O(logN)中logN的底数

    转载:http://blog.csdn.net/jdbc/article/details/42173751 问题: 无论是计算机算法概论.还是数据结构书中, 关于算法的时间复杂度很多都用包含O(log ...

  4. HRBUST1522【单调队列+DP】

    题目:输入一个长度为n的整数序列(A1,A2,--,An),从中找出一段连续的长度不超过m的子序列,使得这个子序列的和最大. #include<stdio.h> #include<s ...

  5. Spring(三):Spring整合Hibernate

    背景: 本文主要介绍使用spring-framework-4.3.8.RELEASE与hibernate-release-5.2.9.Final项目整合搭建的过程. 开发环境简介: 1).jdk 1. ...

  6. Java:import com.sun.awt.AWTUtilities;报错

    参考网址:http://stackoverflow.com/questions/860187/access-restriction-on-class-due-to-restriction-on-req ...

  7. 洛谷 P2590 [ZJOI2008]树的统计(树链剖分)

    题目描述一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w. 我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE u t : 把结点u的权值改为t II. QMAX u v ...

  8. [LeetCode] Minimum ASCII Delete Sum for Two Strings 两个字符串的最小ASCII删除和

    Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings equal. ...

  9. Logistic Regression vs Naive Bayes

    相同 逻辑回归和朴素贝叶斯都是对条件概率\(P(X|y)\)进行建模,使得最终的分类结果有很好的解释性. 不同 具体流程 逻辑回归: 假设\(P(y=1|X)\)满足逻辑函数\(h(z)=1/1+ex ...

  10. [Luogu 3807]【模板】卢卡斯定理

    Description 给定n,m,p(1≤n,m,p≤10​^5​​) 求 C_{n+m}^{m} \mod p 保证P为prime C表示组合数. 一个测试点内包含多组数据. Input 第一行一 ...