[Sdoi2009]Elaxia的路线
Description
Input
Output
Sample Input
1 6 7 8
1 2 1
2 5 2
2 3 3
3 4 2
3 9 5
4 5 3
4 6 4
4 7 2
5 8 1
7 9 1
Sample Output
HINT
对于30%的数据,N ≤ 100;
对于60%的数据,N ≤ 1000;
对于100%的数据,N ≤ 1500,输入数据保证没有重边和自环。
分别以x1,y1,x2,y2为起点,做4次SPFA
分别算出dist[1~4][x]
那么我们可以找到他们各自最短路中相同的边
只要同时满足:
dist[1][u]+w(u,v)+dist[2][v]=dist[1][y1]
dist[3][u]+w(u,v)+dist[4][v]=dist[3][y2]
那么就说明,这条边同时处于两人的最短路上
然后将这些边建一个新图,可以保证无环
最后拓扑排序求出最长的链
但是,这道题隐藏了一个情况:
从y2~x2的w**与从x1~y1的Elaxia在边上相遇,也就是相向而行走一条边,也算共同走了这一条
也就是说,我们要将w**起点终点反转,重新建边和拓扑
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
struct Node
{
int next,to,dis;
}edge[],edge2[];
int head[],num,head2[],num2,dist[][],f[],n,d[],ans,m;
int s1,s2,t1,t2;
bool vis[];
void add(int u,int v,int w)
{
num++;
edge[num].next=head[u];
head[u]=num;
edge[num].to=v;
edge[num].dis=w;
}
void add_Top(int u,int v,int w)
{
num2++;
edge2[num2].next=head2[u];
head2[u]=num2;
edge2[num2].to=v;
edge2[num2].dis=w;
}
void SPFA(int S,int T,int p)
{int i;
queue<int>Q;
memset(dist[p],/,sizeof(dist[p]));
dist[p][S]=;
Q.push(S);
while (Q.empty()==)
{
int u=Q.front();
Q.pop();
vis[u]=;
for (i=head[u];i;i=edge[i].next)
{
int v=edge[i].to;
if (dist[p][v]>dist[p][u]+edge[i].dis)
{
dist[p][v]=dist[p][u]+edge[i].dis;
if (vis[v]==)
{vis[v]=;
Q.push(v);
}
}
}
}
}
void Top_sort()
{int i;
queue<int>Q;
memset(f,,sizeof(f));
for (i=;i<=n;i++)
if (d[i]==) Q.push(i),f[i]=;
while (Q.empty()==)
{
int u=Q.front();
Q.pop();
ans=max(ans,f[u]);
for (i=head2[u];i;i=edge2[i].next)
{
int v=edge2[i].to;
d[v]--;
f[v]=max(f[v],f[u]+edge2[i].dis);
if (d[v]==)
{
Q.push(v);
}
}
}
}
int main()
{int i,u,v,w,j;
cin>>n>>m;
cin>>s1>>t1>>s2>>t2;
for (i=;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
add(v,u,w);
}
SPFA(s1,t1,);
SPFA(t1,s1,);
SPFA(s2,t2,);
SPFA(t2,s2,);
for (i=;i<=n;i++)
{
for (j=head[i];j;j=edge[j].next)
{
int v=edge[j].to;
if (dist[][i]+edge[j].dis+dist[][v]!=dist[][t1]) continue;
if (dist[][i]+edge[j].dis+dist[][v]!=dist[][t2]) continue;
add_Top(i,v,edge[j].dis);
d[v]++;
}
}
Top_sort();
SPFA(t2,s2,);
SPFA(s2,t2,);
memset(d,,sizeof(d));
memset(head2,,sizeof(head2));
for (i=;i<=n;i++)
{
for (j=head[i];j;j=edge[j].next)
{
int v=edge[j].to;
if (dist[][i]+edge[j].dis+dist[][v]!=dist[][t1]) continue;
if (dist[][i]+edge[j].dis+dist[][v]!=dist[][s2]) continue;
add_Top(i,v,edge[j].dis);
d[v]++;
}
}
Top_sort();
cout<<ans;
}
[Sdoi2009]Elaxia的路线的更多相关文章
- BZOJ 1880: [Sdoi2009]Elaxia的路线( 最短路 + dp )
找出同时在他们最短路上的边(dijkstra + dfs), 组成新图, 新图DAG的最长路就是答案...因为两人走同一条路但是不同方向也可以, 所以要把一种一个的s,t换一下再更新一次答案 ---- ...
- 【BZOJ1880】[Sdoi2009]Elaxia的路线(最短路)
[BZOJ1880][Sdoi2009]Elaxia的路线(最短路) 题面 BZOJ 洛谷 题解 假装我们知道了任意两点间的最短路,那么我们怎么求解答案呢? 不难发现公共路径一定是一段连续的路径(如果 ...
- 洛谷 P2149 [SDOI2009]Elaxia的路线 解题报告
P2149 [SDOI2009]Elaxia的路线 题目描述 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia ...
- 【BZOJ 1880】 [Sdoi2009]Elaxia的路线 (最短路树)
1880: [Sdoi2009]Elaxia的路线 Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. ...
- BZOJ1880: [Sdoi2009]Elaxia的路线(最短路)
1880: [Sdoi2009]Elaxia的路线 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 2049 Solved: 805 题目链接:https ...
- 【BZOJ1880】[SDOI2009]Elaxia的路线 (最短路+拓扑排序)
[SDOI2009]Elaxia的路线 题目描述 最近,\(Elaxia\)和\(w**\)的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. \(El ...
- 【BZOJ1880】[Sdoi2009]Elaxia的路线 最短路+DP
[BZOJ1880][Sdoi2009]Elaxia的路线 Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起 ...
- 洛谷——P2149 [SDOI2009]Elaxia的路线
P2149 [SDOI2009]Elaxia的路线 题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w每 ...
- bzoj1880: [Sdoi2009]Elaxia的路线(spfa,拓扑排序最长路)
1880: [Sdoi2009]Elaxia的路线 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 1944 Solved: 759[Submit][St ...
- Luogu P2149 [SDOI2009]Elaxia的路线(最短路+记忆化搜索)
P2149 [SDOI2009]Elaxia的路线 题意 题目描述 最近,\(Elaxia\)和\(w**\)的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们必须合理地安排两个人在一起的 ...
随机推荐
- java封装的概念
继承.封装.多态.抽象是面向对象编程的四大基本概念,其中封装尤为重要,因为从我们学习JAVA开始,就基本上接触了封装,因为JAVA中的所有程序都是写在类中的,类也能当做一种封装. 在面向对象中封装是指 ...
- win7开启wifi
在启用本地共享连接时,出现的错误! 我已经建了一个无线临时网络,来启用共享用来上网的!Internet连接共享访问被启用时,出现了一个错误(null)?而且这错误也会在系统日志里留下记录,都是些莫名其 ...
- NOIP2012 提高组 Day 2
http://www.cogs.pro/cogs/page/page.php?aid=16 期望得分:100+100+0=0 实际得分:100+20+0=120 T2线段树标记下传出错 T1 同余方程 ...
- 在ArcGIS中导出现有mxd的style文件
做好的地图包含许多地图符号,这是之前花了很多功夫做的,怎么把它导出来再用呢? 在ArcGIS中右键工具栏,customize,选择command选项卡,在搜索框中输入style ,选择too ...
- IT学习逆袭的新模式,全栈实习生,不8000就业不还实习费
大家好: 我是马伦,也就是多年耕耘在IT培训一线的老马.老马一直怀揣普惠教育梦想初心,一直为莘莘学子能获得高质量的IT教育服务而奋斗. 之前老马在IT培训机构任职讲师多年,也有丰富的教学管理经验.接触 ...
- HDFS的7个设计特点
1.Block的放置:默认不配置.一个Block会有三份备份,一份放在NameNode指定的DataNode,另一份放在与指定DataNode非同一Rack上的DataNode,最后一份放在与指定Da ...
- 【iOS】 含tableView的ViewController基类的实现
上篇博客写了ViewController的基类的实现,这篇博客主要写在BaseViewController的基础上实现一个含tableView控件的基类的实现,主要给包含tableView的页面来继承 ...
- 如何从0开发一个Atom组件
最近用Atom写博客比较多,然后发现一个很严重的问题..没有一个我想要的上传图片的方式,比如某乎上边就可以直接copy/paste文件,然后进行上传.然而在Atom上没有找到类似的插件,最接近的一个, ...
- CSS简介及基本知识
(CSS)cascading style sheets:层叠样式表.级联式样式表,简称:样式表. Sheets :就是一个样式文件,它的扩展名为.css Style:外观,个性化 样式表的位置 为了学 ...
- hadoop fs:du统计hdfs文件(目录下文件)大小的用法
hadoop fs 更多用法,请参考官网:http://hadoop.apache.org/docs/r1.0.4/cn/hdfs_shell.html 以下是我的使用统计文件时使用的记录: [t@d ...