题目描述

A 公司正在举办一个智力双人游戏比赛----取石子游戏,游戏的获胜者将会获得 A 公司提供的丰厚奖金,因此吸引了来自全国各地的许多聪明的选手前来参加比赛。

与经典的取石子游戏相比,A公司举办的这次比赛的取石子游戏规则复杂了很多:

l 总共有N堆石子依次排成一行,第i堆石子有 ai个石子。

l 开始若干堆石子已被 A公司故意拿走。

l 然后两个玩家轮流来取石子,每次每个玩家可以取走一堆中的所有石子,但有一个限制条件:一个玩家若要取走一堆石子,则与这堆石子相邻的某堆石子已被取走(之前被某个玩家取走或开始被A公司故意拿走)。注意:第 1堆石子只与第 2堆石子相邻,第N堆石子只与第N-1堆石子相邻,其余的第 i堆石子与第i-1堆和第 i+1 堆石子相邻。

l 所有石子都被取走时,游戏结束。谁最后取得的总石子数最多,谁就获得了这场游戏的胜利。

作为这次比赛的参赛者之一,绝顶聪明的你,想知道对于任何一场比赛,如果先手者和后手者都使用最优的策略,最后先手者和后手者分别能够取得的总石子数分别是多少。

输入输出格式

输入格式:

第一行是一个正整数N,表示有多少堆石子。输入文件第二行是用空格隔开的N个非负整数a1, a2, ...,
aN,其中ai表示第i堆石子有多少个石子,ai =
0表示第i堆石子开始被A公司故意拿走。输入的数据保证0<=ai<=100,000,000,并且至少有一个i使得ai =
0。30%的数据满足2<=N<=100,100%的数据满足2<=N<=1,000,000。

输出格式:

仅包含一行,为两个整数,分别表示都使用最优策略时,最后先手者和后手者各自能够取得的总石子数,并且两个整数间用一个空格隔开。

输入输出样例

输入样例#1:
复制
输出样例#1: 复制
者取得9 + 1 + 7 = 17个石子,后手者取得2 + 4 + 3 = 9个石子。本题和一般的博弈问题不一样。本题不讨论输赢,只让选手得到尽量多的石子。
由于双方最终石子数之和是确定的,双方的目标就是使自己-别人的石子数差最大
化。
首先我们可以抽象问题:
有两个栈,若干个双头队列,总长度不超过$10^{6}$
每次可以从栈顶取一个数,也可以从双头队列选一端取一个数。
$2$人轮流以最大化自己数字和的目标取数,问最终结果。
如果只有一个栈,那么取法是一定的。
如果只有一个队列,如果是奇数个,取法也是一定的。如果是偶数个,先手会取
max(奇数位的和,偶数位的和).
本题的关键难点是组合策略。
如果可取元素都是递减的,比如
1 2 3 0 2 1 2 0 4 1
容易发现先手只要贪心地从能取的元素里面拣最大的取走即可。
这样不会给后手好情况。
由于每次一定可以取全场最大值,所以只要一次排序然后交替取值即可。
4 3 2 2 2 1 1 1
如果不是这样,我们可以通过 2 个操作来化简数列:
1. 如果最左端是 A B.. 或者最右端是..B A, 且 A>=B
那么双方在有其它方案时都不会愿意先取走 B,故这种情况可以留到博弈的最后。
由于石子数是确定的,可以直接推出最后谁取到了 A,算出相应差值。
由于可以留到游戏的最后,此时删除这两堆并不影响两人之前的决策。
2. 如果有一段 ..A B C..
且满足 B>=A B>=C
那么我们直接把 ABC 替换成一个 A+C-B 即可。
我们可以这样想:选 A,B,C 的时候是因为没有更好的决策而被迫选的。事实上当
全场没有大于 A+C-B 的石子堆可以直接取时,才会考虑取 A,C 中的一个。那么不管第
一次取 A,B,C 中的元素是从哪边,后手一定也没有别的更好的选择,既然先手选 A/C
都已是被迫了,所以后手选 B 一定不会是差的。留下来的一个也一定是当前不差的选
择。故先手一定取走 A+C,后手取走 B。从对分数差的贡献来看,我们可以直接把 A,B,C
代替成 A+C-B
 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long lol;
int n,top,pd[],l,r,cnt,tot;
lol st[],ans,sum,a[];
bool cmp(lol a,lol b)
{
return a>b;
}
int main()
{int i;
cin>>n;
for (i=;i<=n;i++)
{
scanf("%lld",&st[++top]);
sum+=st[top];
if (st[top]==) pd[top]=;
tot+=(bool)st[top];
while (top>&&(!pd[top])&&(!pd[top-])&&(!pd[top-])&&(st[top-]>=st[top])&&(st[top-]>=st[top-]))
{
st[top-]=st[top]+st[top-]-st[top-];
top-=;
}
}
for (l=;(!pd[l])&&(!pd[l+])&&(st[l]>=st[l+]);l+=)
ans+=tot&?st[l]-st[l+]:st[l+]-st[l];
for (r=top;(!pd[r])&&(!pd[r-])&&(st[r]>=st[r-]);r-=)
ans+=tot&?st[r]-st[r-]:st[r-]-st[r];
for (i=l;i<=r;i++)
if (pd[i]==) a[++cnt]=st[i];
sort(a+,a+cnt+,cmp);
for (i=;i<=cnt;i++)
{
if (i&) ans+=a[i];
else ans-=a[i];
}
cout<<(sum+ans)/<<' '<<(sum-ans)/<<endl;
}

[HNOI2010]STONE取石头游戏的更多相关文章

  1. bzoj2000 [Hnoi2010]stone 取石头游戏

    Description A 公司正在举办一个智力双人游戏比赛----取石子游戏,游戏的获胜者将会获得 A 公司提供的丰厚奖金,因此吸引了来自全国各地的许多聪明的选手前来参加比赛. 与经典的取石子游戏相 ...

  2. BZOJ.2000.[HNOI2010]stone取石头游戏(博弈)

    BZOJ 洛谷 低估这道神题了_(:з」∠)_ MilkyWay好狠啊(小声) \(Description\) 有一些数字,被分成若干双端队列(从两边都可以取)和最多两个栈(只能从某一边一个一个取)的 ...

  3. [luogu] P3210 [HNOI2010]取石头游戏(贪心)

    P3210 [HNOI2010]取石头游戏 题目描述 A 公司正在举办一个智力双人游戏比赛----取石子游戏,游戏的获胜者将会获得 A 公司提供的丰厚奖金,因此吸引了来自全国各地的许多聪明的选手前来参 ...

  4. 【BZOJ2000】[HNOI2000]取石头游戏(贪心,博弈论)

    [BZOJ2000][HNOI2000]取石头游戏(贪心,博弈论) 题面 BZOJ 洛谷 题解 这题好神仙啊,窝不会QaQ. 假装一下只有三个元素\(a_{i-1},a_i,a_{i+1}\),并且满 ...

  5. luogu P3210 [HNOI2010]取石头游戏

    传送门 不会结论做个鬼系列 题意其实是在头尾(最多)两个栈以及中间一些双端队列依次取数,然后每个人都要最大化自己的价值 有一个结论,如果一段序列中,出现了三个相邻位置\(A,B,C\),满足\(A\l ...

  6. 题解 洛谷 P3210 【[HNOI2010]取石头游戏】

    考虑到先手和后手都使用最优策略,所以可以像对抗搜索一样,设 \(val\) 为先手收益减去后手收益的值.那么先手想让 \(val\) 尽可能大,后手想让 \(val\) 尽可能小. 继续分析题目性质, ...

  7. HDU 1729 Stone Game 石头游戏 (Nim, sg函数)

    题意: 有n个盒子,每个盒子可以放一定量的石头,盒子中可能已经有了部分石头.假设石头无限,每次可以往任意一个盒子中放石头,可以加的数量不得超过该盒中已有石头数量的平方k^2,即至少放1个,至多放k^2 ...

  8. Games:取石子游戏(POJ 1067)

    取石子游戏 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 37662   Accepted: 12594 Descripti ...

  9. CH 3401 - 石头游戏 - [矩阵快速幂加速递推]

    题目链接:传送门 描述石头游戏在一个 $n$ 行 $m$ 列 ($1 \le n,m \le 8$) 的网格上进行,每个格子对应一种操作序列,操作序列至多有 $10$ 种,分别用 $0 \sim 9$ ...

随机推荐

  1. sqlplus 的安装和配置

    sqlplus :  oracle公司提供用户操作oracle数据库的工具. 安装所需的包:  1.oracle 客户端    2.sqlplus工具 官方下载地址  http://www.oracl ...

  2. Beta阶段敏捷冲刺报告-DAY1

    Beta阶段敏捷冲刺报告-DAY1 Scrum Meeting 敏捷开发日期 2017.11.2 讨论时间 20:30 讨论地点 下课路上以及院楼侧门 参会人员 项目组全体成员 会议内容 附加功能讨论 ...

  3. vue.js下载及安装配置

    环境 Deepin15.4 下载及配置 node下载地址:http://nodejs.cn/download/ 解压到文件夹 /home/maskerk/vue/ 下 设置软连接: $ ln -s / ...

  4. python pip包管理

    pip 是一个安装和管理 Python 包的工具 , 是 easy_install 的一个替换品.本文将详细说明 安装 pip 的方法和 使用 pip 的一些基本操作如安装.更新和卸载 python ...

  5. Mysql数据库的触发程序

    /** **创建表 */ CREATE TABLE test1(a1 INT); CREATE TABLE test2(a2 INT); CREATE TABLE test3(a3 INT NOT N ...

  6. 第九条:覆盖equals方法时总要覆盖hashCode方法

    Object类的hashCode方法: public native int hashCode();   是一个本地方法. 其中这个方法的主要注释如下: Whenever it is invoked o ...

  7. ASP.NET Web API编程——路由

    路由过程大致分为三个阶段: 1)请求URI匹配已存在路由模板 2)选择控制器 3)选择操作 1匹配已存在的路由模板 路由模板 在WebApiConfig.Register方法中定义路由,例如模板默认生 ...

  8. 如何排查CPU飙升的Java问题

    1. JPS 查看jvm进程 2. 显示线程列表 ps -mp pid -o THREAD,tid,time 找到了耗时最高的线程tid 3. tid转换成16进制 printf "%x\n ...

  9. vue-cli webpack3扩展多模块打包

    场景 在实际的项目开发中会出现这样的场景,项目中需要多个模块(单页或者多页应用)配合使用的情况,而vue-cli默认只提供了单入口打包,所以就想到对vue-cli进行扩展 实现 首先得知道webpac ...

  10. 新概念英语(1-55)The Sawyer family

    新概念英语(1-55)The Sawyer family When do the children do their homework? The Sawyers live at 87 King Str ...