题目描述

小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品。她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星。

有一天她发现,她的饰品被破坏了,很多细线都被拆掉了。这个饰品只剩下了n?1条细线,但通过这些细线,这颗小星星还是被串在一起,也就是这些小星星通过这些细线形成了树。小Y找到了这个饰品的设计图纸,她想知道现在饰品中的小星星对应着原来图纸上的哪些小星星。如果现在饰品中两颗小星星有细线相连,那么要求对应的小星星原来的图纸上也有细线相连。小Y想知道有多少种可能的对应方式。

只有你告诉了她正确的答案,她才会把小饰品做为礼物送给你呢。

输入输出格式

输入格式:

第一行包含个2正整数n,m,表示原来的饰品中小星星的个数和细线的条数。接下来m行,每行包含2个正整数u,v,表示原来的饰品中小星星u和v通过细线连了起来。这里的小星星从1开始标号。保证u&ne;v,且每对小星星之间最多只有一条细线相连。接下来n-1行,每行包含个2正整数u,v,表示现在的饰品中小星星u和v通过细线连了起来。保证这些小星星通过细线可以串在一起。n<=17,m<=n*(n-1)/2

输出格式:

输出共1行,包含一个整数表示可能的对应方式的数量。如果不存在可行的对应方式则输出0。

输入输出样例

输入样例#1:

4 3
1 2
1 3
1 4
4 1
4 2
4 3
输出样例#1:

6

说明

题解:JudgeOnline/upload/201603/4455.txt

本题题意大致是把树上的n个点赋为互不相同的1~n中的数字,同时满足连接关系,有多少方案

如果要枚举的话,复杂度会O(n!)

这种排列的问题可以转化,令状态k,是一个二进制数,为0则表示该数禁用

对于每一个k,我们求出相应的不被禁用的数的可行排列(不需要满足互不相同)

这时可以用容斥,总方案数=没有禁的方案-禁i的方案-禁j的方案+禁i,j的方案

为什么?因为禁i时,因为不考虑重复,所以可能会有一部分是j未出现的方案,等于禁j的方案

求方案数用树形dp

f[i][j]表示i点编号j的方案

f[i][j]=∏v(∑kf[v][k])  条件为图中j,k相连

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct Node
{
int next,to;
}edge[];
int w,q[],n,m,map[][],head[],num;
long long f[][],ans;
void add(int u,int v)
{
num++;
edge[num].next=head[u];
head[u]=num;
edge[num].to=v;
}
void bit(int x)
{int p;
p=;w=;
while (x)
{
if (x&) q[++w]=p;
p++;
x>>=;
}
}
void dfs(int x,int fa)
{int i,j,k;
for (i=;i<=w;i++)
f[x][q[i]]=;
for (j=head[x];j;j=edge[j].next)
if (edge[j].to!=fa)
{
dfs(edge[j].to,x);
for (i=;i<=w;i++)
{long long s=;
for (k=;k<=w;k++)
if (map[q[i]][q[k]])
{
s+=f[edge[j].to][q[k]];
}
f[x][q[i]]*=s;
}
}
}
int main()
{int i,j,u,v;
long long sum;
cin>>n>>m;
for (i=;i<=m;i++)
{
scanf("%d%d",&u,&v);
map[u][v]=map[v][u]=;
}
for (i=;i<=n-;i++)
{
scanf("%d%d",&u,&v);
add(u,v);add(v,u);
}
for (i=;i<=(<<n)-;i++)
{
bit(i);
//cout<<w<<endl;
//memset(f,0,sizeof(f));
sum=;
dfs(,);
for (j=;j<=w;j++)
sum+=f[][q[j]];
//cout<<sum<<endl;
if ((n&)==(w&)) ans+=sum;
else ans-=sum;
}
cout<<ans;
}

[ZJOI2016]小星星的更多相关文章

  1. BZOJ 4455: [Zjoi2016]小星星 [容斥原理 树形DP]

    4455: [Zjoi2016]小星星 题意:一个图删掉一些边形成一棵树,告诉你图和树的样子,求让图上的点和树上的点对应起来有多少方案 看了很多题解又想了一段时间,感觉题解都没有很深入,现在大致有了自 ...

  2. 4455[Zjoi2016]小星星 容斥+dp

    4455: [Zjoi2016]小星星 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 527  Solved: 317[Submit][Status] ...

  3. [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)

    这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...

  4. 【BZOJ 4455】 4455: [Zjoi2016]小星星 (容斥原理+树形DP)

    4455: [Zjoi2016]小星星 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 426  Solved: 255 Description 小Y是 ...

  5. 洛谷 P3349 [ZJOI2016]小星星 解题报告

    P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...

  6. bzoj 4455 [Zjoi2016]小星星 树形dp&容斥

    4455: [Zjoi2016]小星星 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 643  Solved: 391[Submit][Status] ...

  7. 【题解】P3349 [ZJOI2016]小星星 - 子集dp - 容斥

    P3349 [ZJOI2016]小星星 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 小 \(Y\) 是一个心灵手巧 ...

  8. ZJOI2016 小星星 题解

    我一生之敌是状压 本文发表于 洛谷博客:https://www.luogu.com.cn/blog/LoveMC/solution-p3349 Cnblogs:https://www.cnblogs. ...

  9. BZOJ4455: [Zjoi2016]小星星

    Description 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细 线连着两颗小星星.有一天她发现,她的饰品被破坏了,很多细线都被拆掉了.这 ...

随机推荐

  1. [福大软工] W班 软件产品案例分析

    作业要求 https://edu.cnblogs.com/campus/fzu/FZUSoftwareEngineering1715W/homework/1300 评分细则 第一部分 调研,评测 (3 ...

  2. webview缓存及跳转时截取url地址、监听页面变化

    缓存及一些设定 我在做一些项目时,h5做的项目手机浏览器能使用,但是在搬到webview时候不能用,这个时候通过查阅资料,原来是webview没有设定好,包括缓存.缓存大小及路径等等 mWebview ...

  3. Linux 磁盘和文件管理系统 文件打包解压备份 VIM、VI编辑器

  4. 服务器磁盘阵列数据恢复,raid5两块硬盘掉线数据恢复方法

    [用户单位信息] 农业科学研究院某研究所 [磁盘阵列故障发生过程描述]客户的DELL MD1000服务器内置15块1TB硬盘搭建为RAID5磁盘阵列阵列,服务器在正常工作中有一块硬盘离线,管理员对磁盘 ...

  5. javascript实现小鸟飞行轨迹

    javascript实现小鸟飞行轨迹 代码如下:

  6. c# gridview 新增行

    string[] newRow = {"long","d","b"}; Gridview.Rows.Insert(Gridview.Rows ...

  7. CSS揭秘(三)形状

    Chapter 3 1. 椭圆 椭圆的实现主要依靠 border-radius 属性,该属性确定边框切圆角的半径大小,可以指定数值 px,也可以使用百分比显示 而且该属性非常灵活,四个角可以分别设置 ...

  8. 解决IE8下opacity属性失效问题

    由于opacity属性存在兼容性问题,所以在IE8下,用opacity来设置元素的透明度,会失效,从而导致页面的样式问题. 在IE8及其更早的浏览器下,我们可以使用filter属性,来代替opacit ...

  9. 深度爬取之rules

    深度爬取之rules CrawlSpider使用rules来决定爬虫的爬取规则,并将匹配后的url请求提交给引擎.所以在正常情况下,CrawlSpider不需要单独手动返回请求了. 在rules中包含 ...

  10. python 中 reduce 函数的使用

    reduce()函数也是Python内置的一个高阶函数. reduce()函数接收的参数和 map()类似,一个函数 f,一个list,但行为和 map()不同,reduce()传入的函数 f 必须接 ...