Description

Solution

首先注意到实际上约束关系构成了一棵树

考虑这个排列 \(p\),编号为 \(a[i]\) 的出现了,\(i\) 才可以出现

那么如果连边 \((a[i],i)\),就会构成一棵以 \(0\) 为根的树,每一个点只有一个父亲

否则就不合法

因为要父亲被选入,这个点才能被选入,所以排列 \(p\),相当于是这棵树的一种合法的拓扑序

要求的就是代价最大的一个拓扑序

那么问题就和 \(POJ\,2054\) 一样的做法了,用一个神奇的贪心

每次找出全局的权值最小值,往父亲合并,合并成新节点,权值为平均值,即 \(\frac{\sum w_i}{size}\)

答案加上被合并的点的权值乘以父亲的 \(size\)

正确性感性理解一下,具体证明和国王游戏差不多,发现 \(swap\) 之后不会更优

实现可以用一个堆或者 \(set\) 实现

然而 \(set\) 被卡常了,开 \(O2\) 才能过

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1000010;
int n,a[N],w[N],head[N],nxt[N],to[N],num=0,in[N],fa[N];
inline void link(int x,int y){nxt[++num]=head[x];to[num]=y;head[x]=num;}
inline bool topsort(){
queue<int>Q;
Q.push(0);
while(!Q.empty()){
int x=Q.front();Q.pop();
for(int i=head[x];i;i=nxt[i]){
int u=to[i];
if(!(--in[u]))Q.push(u);
}
}
for(int i=1;i<=n;i++)if(in[i]>0)return false;
return true;
}
struct data{
ll w;int s,x;
bool operator <(const data &p)const{
if(w*p.s!=p.w*s)return w*p.s<p.w*s;
return x<p.x;
}
}p[N];
set<data>Q;
int cnt=0,b[N];
inline int find(int x){return b[x]==x?x:b[x]=find(b[x]);}
int main(){
freopen("perm.in","r",stdin);
freopen("perm.out","w",stdout);
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]),link(a[i],i),in[i]++,fa[i]=a[i];
for(int i=1;i<=n;i++)scanf("%d",&w[i]);
if(!topsort()){puts("-1");return 0;}
for(int i=1;i<=n;i++){
p[i]=(data){w[i],1,i};
Q.insert(p[i]);b[i]=i;
}
cnt=n;p[0].s=1;
ll ans=0;
data t;
while(!Q.empty()){
t=*Q.begin();Q.erase(t);
int y=find(fa[t.x]);
ans+=t.w*p[y].s;
if(y){
Q.erase(p[y]);
data e=t;
e.w+=p[y].w;e.s+=p[y].s;e.x=++cnt;
b[cnt]=cnt;b[y]=cnt;b[find(t.x)]=cnt;
fa[cnt]=fa[y];fa[t.x]=cnt;
p[cnt]=e;
Q.insert(e);
}
else b[find(t.x)]=0,p[0].s+=t.s;
}
cout<<ans<<endl;
return 0;
}

bzoj 5289: [Hnoi2018]排列的更多相关文章

  1. 5289: [Hnoi2018]排列

    5289: [Hnoi2018]排列 链接 分析: 首先将题意转化一下:每个点向a[i]连一条边,构成了一个以0为根节点的树,要求选一个拓扑序,点x是拓扑序中的第i个,那么价值是i*w[x].让价值最 ...

  2. 【BZOJ5289】[HNOI2018]排列(贪心)

    [BZOJ5289][HNOI2018]排列(贪心) 题面 BZOJ 洛谷 题解 这个限制看起来不知道在干什么,其实就是找到所有排列\(p\)中,\(p_k=x\),那么\(k<j\),其中\( ...

  3. BZOJ.5289.[AHOI/HNOI2018]排列(贪心 heap)

    BZOJ LOJ 洛谷 \(Kelin\)写的挺清楚的... 要求如果\(a_{p_j}=p_k\),\(k\lt j\),可以理解为\(k\)要在\(j\)之前选. 那么对于给定的\(a_j=k\) ...

  4. [BZOJ 1072] [SCOI2007] 排列perm 【状压DP】

    题目链接:BZOJ 1072 这道题使用 C++ STL 的 next_permutation() 函数直接暴力就可以AC .(使用 Set 判断是否重复) 代码如下: #include <io ...

  5. BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 911  Solved: 566[Submit][Status ...

  6. BZOJ 1072: [SCOI2007]排列perm 状态压缩DP

    1072: [SCOI2007]排列perm Description 给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0).例如123434有90种排列能被2整除,其中末位为 ...

  7. BZOJ 1072 [SCOI2007]排列perm

    1072: [SCOI2007]排列perm Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1268  Solved: 782[Submit][Sta ...

  8. 数学(错排):BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 693  Solved: 434[Submit][Status ...

  9. BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]

    4517: [Sdoi2016]排列计数 题意:多组询问,n的全排列中恰好m个不是错排的有多少个 容斥原理强行推♂倒她 $恰好m个不是错排 $ \[ =\ \ge m个不是错排 - \ge m+1个不 ...

随机推荐

  1. 《Language Implementation Patterns》之 数据聚合符号表

    本章学习一种新的作用域,叫做数据聚合作用域(data aggregate scope),和其他作用域一样包含符号,并在scope tree里面占据一个位置. 区别在于:作用域之外的代码能够通过一种特殊 ...

  2. 【iOS】Swift if let 和 if var

    if let unwrappedOptional = postDict { print("The optional has a value! It's \(unwrappedOptional ...

  3. Android Studio使用过程中遇到的错误

    > 错误1 1. This fragment should provide a default constructor (a public constructor wit 代码不规范,这个错误是 ...

  4. C++ 异常小记

    catch必定使用拷贝构造函数 如下代码编译不通过,因为拷贝构造被标记delete #include <stdexcept> #include <cstdlib> #inclu ...

  5. LeetCode & Q217-Contains Duplicate-Easy

    Array Hash Table Description: Given an array of integers, find if the array contains any duplicates. ...

  6. Lock(三)查看是谁把表给锁了

    查看是谁把表给锁了 select se1.inst_id as 被阻塞的会话节点, se2.inst_id as 罪魁祸首节点, se1.sid as 被阻塞的会话ID, ob.object_name ...

  7. python __str__ 和__repr__方法

    看下面的例子就明白了 class Test(object): def __init__(self, value='hello, world!'): self.data = value >> ...

  8. Spring Boot面试题

    Spring Boot 是微服务中最好的 Java 框架. 我们建议你能够成为一名 Spring Boot 的专家. 问题一 Spring Boot.Spring MVC 和 Spring 有什么区别 ...

  9. 无用代码清除tip

    测试提了个bug过来,说是有个ajax请求报404了. 我一看,后台代码被人删了,问了同事,因为实现机制变了,是应该删,但删多了. 把service和controller都恢复后,一个接口中除了我那个 ...

  10. "共振式”项目管理

    "共振式”项目管理--是我第一个提出的吗?:) 脑子里突然想到项目管理的一些事情,然后想到项目其实是有节奏的,项目中的人员其实如果找到了这个节奏,踏准了节奏,一切将是顺风顺水. 刚准备动笔时 ...