线性规划与网络流24题●09方格取数问题&13星际转移问题
●(做codevs1908时,发现测试数据也涵盖了1907,想要一并做了,但因为“技术”不佳,搞了一上午)
●09方格取数问题(codevs1907 方格取数3)
- 想了半天,也没成功建好图;
- 无奈下参考题解,说是本题要求二分图点权最大独立集,然后可以由结论:“最大点权独立集 = 所有点权 - 最小点权覆盖集 = 所有点权 - 最小割集 = 所有点权 - 网络最大流”转化到求最大流(我真的很懵逼,但又感觉很有道理);
- 下面附上solution:(自己领悟吧)
- (不懂那个鬼结论的我就用那个结论建了个图,跑了个Dinic。)
●13星际转移问题(codevs 1908)
- (这个题的要比上一个好想一些。(因为上一题的鬼结论我真不知道))
- 思路:
- 本题的建图比较有趣,要把每个空间站按天数进行建点和连边;
- 建图:
- 1.原点(s)到地球(ear)有一条容量为k的边;(表示要送出k个人民)
- 2.月球(yue)到汇点(t)有一条容量为INF的边;
- 3.每个空间站的前一天的点到该空间站的后一天有一条容量为INF的边;(表示人民可以待在空间站里度过一天又一天)
- 4.若一个飞船在前一天在某一空间站(或地球),后一天在另一个空间站(或月球),则在对应的两个点间连一条有向边,容量为飞船的载重;(表示前一天某一空间站(或地球)的几个人民可以通过一个飞船坐到后一天的另一个空间站(或月球);
- 以题目的样例为例,上一张图帮助理解;
- 上图中:
- 方框为点,里面的数字为编号;
- 黑色箭头为边,上的数字为容量,(未标的均为INF);
- 红色路径为最大的可行流。
- (建图方法解决后,但还有一个问题,Day是未知的,该怎么确定点有多少呢?)
- 方法:枚举天数或二分天数,然后跑个最大流判断是否能将人民送完(即汇点的流入量是否等于k);
- 选择:枚举天数:
- 原因:改图比较特殊,若用枚举天数的方法,只需每次在前一次的图上加新点,连新边即可,一直到找到答案。若用二分的话,则需要每次重新建图。
- (当然,在开始枚举天数之前,先用并查集检查一下人民能否从地球到月球。)
- 总:枚举+Dinic(找最大流)+并查集(e,只是用来检查的)
●代码(为了AC掉codevs1908,把两份代码怼到一起了):
#include<iostream>
#include<cstdio>
#include<cstring>
#define INF 0x3f3f3f3f
using namespace std;
int n,m,k,yue=1,ear=2,sz=4,ent=2,aim,tot,s,t;
int sps[30][30],cw[30][2],ld[30],ls[30],head[30000],h[30000],q[30000];
int fa[30];
struct edge{
int to,cap,next;
}e[300000];
bool special_read()
{
char s[100];
gets(s);
int a[4]={0},o=1;
int len=strlen(s);
for(int i=0;i<len;i++)
{
if('0'<=s[i]&&s[i]<='9') a[o]=a[o]*10+s[i]-'0';
else if(a[o]) o++;
}
n=a[1];m=a[2];
return k=a[3];
}
int read(int &o)
{
int x=0,f=1; char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while('0'<=ch&&ch<='9') {x=x*10+ch-'0';ch=getchar();}
o=x*f;
}
void add_edge(int u,int v,int cap)
{
e[ent]=(edge){v,cap,head[u]};head[u]=ent++;
e[ent]=(edge){u,0,head[v]};head[v]=ent++;
}
void make_new_edge(int day)
{
for(int i=3;i<=n+3-1;i++) add_edge(ld[i],++sz,INF),ld[i]=sz;
for(int i=1;i<=m;i++)
{
int t=day%cw[i][1],o=sps[i][t];
if(o==ear) add_edge(ear,++sz,cw[i][0]),ls[i]=sz;
else if(o==yue) add_edge(ls[i],yue,cw[i][0]),ls[i]=0;
else
{
if(ls[i])add_edge(ls[i],ld[o],cw[i][0]);
ls[i]=ld[o];
}
}
}
bool bfs(int s,int t)
{
memset(h,0,sizeof(h));
int l=0,r=1;q[1]=s;h[s]=1;
while(l<r)
{
int u=q[++l];
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].to;
if(h[v]||!e[i].cap) continue;
h[v]=h[u]+1; q[++r]=v;
}
}
return h[t];
}
int dfs(int u,int res,int t)
{
if(u==t) return res;
int flowout=0,f;
for(int i=head[u];i;i=e[i].next)
{
int v=e[i].to;
if(!e[i].cap||h[v]!=h[u]+1) continue;
f=dfs(v,min(res,e[i].cap),t);
e[i].cap-=f; e[i^1].cap+=f;
flowout+=f; res-=f;
if(!res) break;
}
if(!flowout) h[u]=-1;
return flowout;
}
int Dinic(int s,int t)
{
while(bfs(s,t))
{
aim+=dfs(s,INF,t);
}
return aim;
}
void check_and_add(int a,int b,int c,int d)
{
c+=a; d+=b;
if(c==0||c==n+1||d==0||d==m+1) return;
int u=(a-1)*m+b,v=(c-1)*m+d;
add_edge(u,v,INF);
}
int find(int x)
{
if(fa[x]!=x) return fa[x]=find(fa[x]);
return x;
}
void unio(int x,int y)
{
int fx=find(x),fy=find(y);
if(fx!=fy) fa[fy]=fx;
}
void _1908()
{
for(int i=1;i<=25;i++) fa[i]=i;
for(int i=1;i<=m;i++)
{
read(cw[i][0]);read(cw[i][1]);
for(int j=0;j<cw[i][1];j++)
{
read(sps[i][j]);
sps[i][j]+=2;
if(j)
for(int jj=0;jj<j;jj++)
unio(sps[i][jj],sps[i][j]);
}
}
if(find(yue)!=find(ear)) printf("0");
else
{
int day=0;
add_edge(3,ear,k); add_edge(yue,4,INF);
for(int i=3;i<=n+3-1;i++) ld[i]=++sz;
for(int i=1;i<=m;i++)
{
int o=sps[i][0];
if(o==ear) add_edge(ear,++sz,cw[i][0]),ls[i]=sz;
else if(o!=yue) ls[i]=ld[o];
}
while(1)
{
++day;
make_new_edge(day);
if(Dinic(3,4)==k) { printf("%d",day); break;}
} }
}
void _1907()
{
int x,co=0;
s=n*m+1;t=n*m+2;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
co=(i+j)%2;
int u=(i-1)*m+j;scanf("%d",&x); tot+=x;
if(!co)
{
add_edge(s,u,x);
check_and_add(i,j,-1,0);
check_and_add(i,j,1,0);
check_and_add(i,j,0,-1);
check_and_add(i,j,0,1);
}
else add_edge(u,t,x);
}
printf("%d",tot-Dinic(s,t));
}
int main()
{
if(special_read()) _1908();
else _1907(); return 0;
}
线性规划与网络流24题●09方格取数问题&13星际转移问题的更多相关文章
- LibreOJ #6007. 「网络流 24 题」方格取数 最小割 最大点权独立集 最大流
#6007. 「网络流 24 题」方格取数 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 ...
- Libre 6007 「网络流 24 题」方格取数 / Luogu 2774 方格取数问题 (网络流,最大流)
Libre 6007 「网络流 24 题」方格取数 / Luogu 2774 方格取数问题 (网络流,最大流) Description 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从 ...
- 【刷题】LOJ 6007 「网络流 24 题」方格取数
题目描述 在一个有 \(m \times n\) 个方格的棋盘中,每个方格中有一个正整数. 现要从方格中取数,使任意 \(2\) 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数 ...
- 【PowerOJ1744&网络流24题】方格取数问题(最小割)
题意: n,m<=30 思路: [问题分析] 二分图点权最大独立集,转化为最小割模型,从而用最大流解决. [建模方法] 首先把棋盘黑白染色,使相邻格子颜色不同,所有黑色格子看做二分图X集合中顶点 ...
- 【线性规划与网络流 24题】已完成(3道题因为某些奇怪的原因被抛弃了QAQ)
写在前面:SDOI2016 Round1滚粗后蒟蒻开始做网络流来自我拯救(2016-04-11再过几天就要考先修课,现在做网络流24题貌似没什么用←退役节奏) 做的题目将附上日期,见证我龟速刷题. 1 ...
- 题解:线性规划与网络流24题 T2 太空飞行计划问题
太空飞行计划问题 问题描述 W教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行可进行一系列商业性实验而获取利润.现已确定了一个可供选择的实验集合E={E1,E2,-,Em},和进行这些实验需要 ...
- AC日记——[网络流24题]方格取数问题 cogs 734
734. [网络流24题] 方格取数问题 ★★☆ 输入文件:grid.in 输出文件:grid.out 简单对比时间限制:1 s 内存限制:128 MB «问题描述: 在一个有m*n ...
- Cogs 734. [网络流24题] 方格取数问题(最大闭合子图)
[网络流24题] 方格取数问题 ★★☆ 输入文件:grid.in 输出文件:grid.out 简单对比 时间限制:1 s 内存限制:128 MB «问题描述: 在一个有m*n 个方格的棋盘中,每个方格 ...
- [网络流24题] 方格取数问题/骑士共存问题 (最大流->最大权闭合图)
洛谷传送门 LOJ传送门 和太空飞行计划问题一样,这依然是一道最大权闭合图问题 “骑士共存问题”是“方格取数问题”的弱化版,本题解不再赘述“骑士共存问题”的做法 分析题目,如果我们能把所有方格的数都给 ...
随机推荐
- 201621123043 《Java程序设计》第9周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结集合与泛型相关内容. 泛型的定义: 泛型,即"参数化类型".一提到参数,最熟悉的就是定义方法时有形参,然后调用此 ...
- Cypher语法
cypher是neo4j官网提供的声明式查询语言,非常强大,用它可以完成任意的图谱里面的查询过滤,我们知识图谱的一期项目 基本开发完毕,后面会陆续总结学习一下neo4j相关的知识.今天接着上篇文章来看 ...
- 清华集训2015 V
#164. [清华集训2015]V http://uoj.ac/problem/164 统计 描述 提交 自定义测试 Picks博士观察完金星凌日后,设计了一个复杂的电阻器.为了简化题目,题目中的常数 ...
- js中多维数组转一维
法一:使用数组map()方法,对数组中的每一项运行给定函数,返回每次函数调用的结果组成的数组. var arr = [1,[2,[[3,4],5],6]]; function unid(arr){ v ...
- JAVA_SE基础——60.初识Object
java是面向对象的语言,核心思想:找适合 的对象做适合 的事情:方式一:自定义类,然后通过自定义的类创建对象.方式二:sun提供了很多的类给我使用,我们只需要认识这些类,我们就可以通过这些类创建对象 ...
- Nginx原理和配置总结
一:前言 Nginx是一款优秀的HTTP服务器和反向代理服务器,除却网上说的效率高之类的优点,个人的切身体会是Nginx配置确实简单而且还好理解,和redis差不多,比rabbitmq好理解太多了: ...
- 什么是MQTT协议?
MQTT协议介绍 MQTT协议是什么? MQTT(Message Queuing Telemetry Transport Protocol)的全称是消息队列遥感传输协议的缩写,是一种基于轻量级代理的发 ...
- Linux进程管理:后台启动进程和任务管理命令
一.为什么要使程序在后台执行 我们的应用有时候要运行时间很长,如:几个小时甚至几个星期,我们可以让程序在后台一直跑. 让程序在后台运行的好处有: 终端关机不影响后台进程的运行.(不会终端一关机或者网络 ...
- javascript学习(1)用户的Javascript 放在哪里和函数的绑定方式
一.实验 1:js脚本放在那里最合适? 1.代码 1.1.test.html <!DOCTYPE html><html> <head> < ...
- JavaScript中Global、Math、Date对象的常用方法
JavaScript当中Global.Math.Date类型常用方法如下: /* js 中 Global对象 是一个不存在的对象,它里面的方法可以调用 常用方法: 1 encodeURI 对uri进行 ...