D Tree

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)
Total Submission(s): 3876    Accepted Submission(s): 743

Problem Description
There is a skyscraping tree standing on the playground of Nanjing University of Science and Technology. On each branch of the tree is an integer (The tree can be treated as a connected graph with N vertices, while each branch can be treated as a vertex). Today the students under the tree are considering a problem: Can we find such a chain on the tree so that the multiplication of all integers on the chain (mod 106 + 3) equals to K?
Can you help them in solving this problem?
 
Input
There are several test cases, please process till EOF.
Each test case starts with a line containing two integers N(1 <= N <= 105) and K(0 <=K < 106 + 3). The following line contains n numbers vi(1 <= vi < 106 + 3), where vi indicates the integer on vertex i. Then follows N - 1 lines. Each line contains two integers x and y, representing an undirected edge between vertex x and vertex y.
 
Output
For each test case, print a single line containing two integers a and b (where a < b), representing the two endpoints of the chain. If multiply solutions exist, please print the lexicographically smallest one. In case no solution exists, print “No solution”(without quotes) instead.
For more information, please refer to the Sample Output below.
 
Sample Input
5 60
2 5 2 3 3
1 2
1 3
2 4
2 5
5 2
2 5 2 3 3
1 2
1 3
2 4
2 5
 
Sample Output
3 4
No solution
/*
hdu 4812 DTree (点分治) problem:
求最小的点对使 u->v的点权的乘积%mod=limit. solve:
每次求过当前树根节点的情况. 每次可以计算出 一点到当前根节点的情况temp,所以只需要找出其它子树中是否有limit/temp
因为有取余,所以先预处理出所有的逆元. hhh-2016-08-23 10:52:26
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <math.h>
#include <map>
#define lson i<<1
#define rson i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define key_val ch[ch[root][1]][0]
#define inf 0x3FFFFFFFFFFFFFFFLL
#define mod 1000003
using namespace std;
const int maxn = 100010;
ll val[maxn],d[maxn],limit;
int head[maxn];
int n,k,s[maxn],f[maxn],root;
int Size,tot;
bool vis[maxn];
vector<ll> ta; struct node
{
int to,w,next;
}edge[maxn<<2]; void add_edge(int u,int v)
{
edge[tot].to=v,edge[tot].next=head[u],head[u]=tot++;
} void get_root(int now,int fa)
{
int v;
s[now] = 1,f[now] = 0;
for(int i = head[now];~i;i = edge[i].next)
{
if( (v=edge[i].to) == fa || vis[v])
continue;
get_root(v,now);
s[now] += s[v];
f[now] = max(f[now],s[v]);
}
f[now] = max(f[now],Size - s[now]);
if(f[now] < f[root]) root = now;
}
int id[maxn];
int idnum;
void dfs(int now,int fa)
{
int v;
ta.push_back(d[now]);
id[idnum++] = now;
s[now] = 1;
for(int i = head[now];~i;i = edge[i].next)
{
if( (v=edge[i].to) == fa || vis[v])
continue;
d[v] = (d[now] * val[v])%mod;
dfs(v,now);
s[now] += s[v];
}
}
int flag[mod + 10];
int mp[mod + 10];
int cur = 0;
ll ni[mod+10];
int ans[2];
void to_ans(int a, int b)
{ if (a > b) swap(a,b);
if (ans[0] == -1 || ans[0] > a) ans[0] = a, ans[1] = b;
else if (ans[0] == a && ans[1] > b) ans[1] = b;
// cout <<"a:"<<ans[0] << " b:" <<ans[1] <<endl;
} void work(int now,int cnt)
{
f[0] = Size = cnt;
get_root(now,root = 0);
int v;
vis[root] = 1;
for(int i = head[root];~i;i = edge[i].next)
{
if(!vis[v = edge[i].to])
{
ta.clear(),d[v] = val[v],idnum = 0;
dfs(v,0); for(int j = 0; j < ta.size();j++)
{
if(val[root]*ta[j] % mod == limit && root != id[j])
to_ans(root,id[j]);
ll t = (ll)limit*ni[val[root]*ta[j]%mod]%mod;
if(flag[t] != cur)
continue;
if(mp[t] == id[j])
continue;
to_ans(mp[t],id[j]);
}
for(int j = 0; j < ta.size(); j++)
{
int t = ta[j];
if(flag[t] != cur || mp[t] > id[j]) mp[t] = id[j],flag[t] = cur;
}
}
}
cur ++;
for(int i = head[root];~i;i = edge[i].next)
{
if(vis[edge[i].to])
continue;
work(edge[i].to,s[edge[i].to]);
}
} ll egcd(ll a,ll b, ll &x, ll &y)
{
ll temp,tempx;
if (b == 0)
{
x = 1;
y = 0;
return a;
}
temp = egcd(b,a % b, x, y);
tempx = x;
x = y;
y = tempx - a / b * y;
return temp;
} int main()
{ ll y;
for (int i = 0; i < mod; i++)
{
egcd(i*1ll, mod*1ll, ni[i], y);
ni[i] %= mod, ni[i] = (ni[i]+mod)%mod;
}
while(scanf("%d%I64d",&n,&limit)!=EOF)
{
if(!n && !limit)
break;
clr(vis,0),clr(flag,0);
clr(head,-1),tot = 0;
ans[0] = ans[1] = -1;
int a,b;
for(int i = 1; i <= n; i++)
{
scanf("%I64d",&val[i]);
}
for(int i = 1; i < n; i++)
{
scanf("%d%d",&a,&b);
add_edge(a,b);
add_edge(b,a);
}
cur = 1;
work(1,n);
if(ans[0] == -1)
printf("No solution\n");
else
printf("%d %d\n",ans[0],ans[1]);
}
return 0;
}

  

hdu 4812 DTree (点分治)的更多相关文章

  1. HDU 4812 D Tree

    HDU 4812 思路: 点分治 先预处理好1e6 + 3以内到逆元 然后用map 映射以分治点为起点的链的值a 成他的下标 u 然后暴力跑出以分治点儿子为起点的链的值b,然后在map里查找inv[b ...

  2. hdu 5830 FFT + cdq分治

    Shell Necklace Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  3. HDU - 4812 D Tree 点分治

    http://acm.hdu.edu.cn/showproblem.php?pid=4812 题意:有一棵树,每个点有一个权值要求找最小的一对点,路径上的乘积mod1e6+3为k 题解:点分治,挨个把 ...

  4. HDU 4812 D Tree 树分治+逆元处理

    D Tree Problem Description   There is a skyscraping tree standing on the playground of Nanjing Unive ...

  5. hdu 4812 D Tree(树的点分治)

    D Tree Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others) Total ...

  6. HDU 4812 D Tree 树分治

    题意: 给出一棵树,每个节点上有个权值.要找到一对字典序最小的点对\((u, v)(u < v)\),使得路径\(u \to v\)上所有节点权值的乘积模\(10^6 + 3\)的值为\(k\) ...

  7. HDU 4812 (点分治)

    题目:https://vjudge.net/contest/307753#problem/E 题意:给你一颗树,树上每个点都有个权值,现在问你是否存在 一条路径的乘积 mod 1e6+3  等于 k的 ...

  8. E - D Tree HDU - 4812 点分治+逆元

    这道题非常巧妙!!! 我们进行点分治的时候,算出当前子节点的所有子树中的节点,到当前节点节点的儿子节点的距离,如下图意思就是 当前节点的红色节点,我们要求出红色节点的儿子节点绿色节点,所有绿色的子树节 ...

  9. HDU 4812:D Tree(树上点分治+逆元)

    题目链接 题意 给一棵树,每个点上有一个权值,问是否存在一条路径(不能是单个点)上的所有点相乘并对1e6+3取模等于k,输出路径的两个端点.如果存在多组答案,输出字典序小的点对. 思路 首先,(a * ...

随机推荐

  1. Linux下I/O多路转接之epoll(绝对经典)

    epoll 关于Linux下I/O多路转接之epoll函数,什么返回值,什么参数,我不想再多的解释,您不想移驾,我给你移来: http://blog.csdn.net/colder2008/artic ...

  2. scrapy csvfeed spider

    class CsvspiderSpider(CSVFeedSpider): name = 'csvspider' allowed_domains = ['iqianyue.com'] start_ur ...

  3. 一个轻量级iOS安全框架:SSKeyChain

    摘要 SSKeyChains对苹果安全框架API进行了简单封装,支持对存储在钥匙串中密码.账户进行访问,包括读取.删除和设置.SSKeyChain的作者是大名鼎鼎的SSToolkit的作者samsof ...

  4. ajax实现无刷新分页效果

    基于jquery.pagination.js实现的无刷新加载分页数据效果. 简介与说明 * 该插件为Ajax分页插件,一次性加载数据,故分页切换时无刷新与延迟.如果数据量较大,加载会比较慢. * 分页 ...

  5. caffe使用ctrl-c不能保存模型

    caffe使用Ctrl-c 不能保存模型: 是因为使用的是 tee输出日志 解决方法:kill -s SIGINT <proc_id> 或者使用 GLOG_log_dir=/path/to ...

  6. EasyUI 中datagrid 分页。

    注释:datagrid分页搞了好几天才完全搞好,网上没完全的资料.明天晚上贴代码. 睡觉.

  7. jenkins简单安装及配置(Windows环境)

    jenkins是一款跨平台的持续集成和持续交付.基于Java开发的开源软件,提供任务构建,持续集成监控的功能,可以使开发测试人员更方便的构建软件项目,提高工作效率. Windows平台下,一般安装方法 ...

  8. Python内置函数(39)——help

    英文文档: help([object]) Invoke the built-in help system. (This function is intended for interactive use ...

  9. kubernetes入门(06)kubernetes的核心概念(3)

    一.API 对象 API对象是K8s集群中的管理操作单元.K8s集群系统每支持一项新功能,引入一项新技术,一定会新引入对应的API对象,支持对该功能的管理操作.例如副本集Replica Set对应的A ...

  10. Linux知识积累(6) 系统目录及其用途

    linux系统常见的重要目录以及各个目作用:/ 根目录.包含了几乎所有的文件目录.相当于中央系统.进入的最简单方法是:cd /./boot引导程序,内核等存放的目录.这个目录,包括了在引导过程中所必需 ...