Tozan and Gezan(x*y<a*b)
E - Tozan and Gezan
Time limit : 2sec / Memory limit : 256MB
Score : 700 points
Problem Statement
You are given sequences A and B consisting of non-negative integers. The lengths of both A and B are N, and the sums of the elements in A and B are equal. The i-th element in A is Ai, and the i-th element in B is Bi.
Tozan and Gezan repeats the following sequence of operations:
- If A and B are equal sequences, terminate the process.
- Otherwise, first Tozan chooses a positive element in A and decrease it by 1.
- Then, Gezan chooses a positive element in B and decrease it by 1.
- Then, give one candy to Takahashi, their pet.
Tozan wants the number of candies given to Takahashi until the process is terminated to be as large as possible, while Gezan wants it to be as small as possible. Find the number of candies given to Takahashi when both of them perform the operations optimally.
Constraints
- 1≤N≤2×105
- 0≤Ai,Bi≤109(1≤i≤N)
- The sums of the elements in A and B are equal.
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A1 B1
:
AN BN
Output
Print the number of candies given to Takahashi when both Tozan and Gezan perform the operations optimally.
Sample Input 1
2
1 2
3 2
Sample Output 1
2
When both Tozan and Gezan perform the operations optimally, the process will proceed as follows:
- Tozan decreases A1 by 1.
- Gezan decreases B1 by 1.
- One candy is given to Takahashi.
- Tozan decreases A2 by 1.
- Gezan decreases B1 by 1.
- One candy is given to Takahashi.
- As A and B are equal, the process is terminated.
Sample Input 2
3
8 3
0 1
4 8
Sample Output 2
9
Sample Input 3
1
1 1
Sample Output 3
0 题意:求满足条件x*y<a*b最多的组数,其中a,b已知。
题解:要满足<a*b,x,y中必定存在<sqrt(a*b)的数;
① 如果t2*t2==a*b,在满足a==b的条件下,因为是<a*b,所以t2*2—2,因为a,b被计算了两次;否则在t2*t2==a*b的各种情况中还存在a!=t2&&a!=b的情况,所以还要-1;
② 如果满足t2*t2为最后一组满足条件的数时,只需要-1,(重复计算了t2*t2);
③ 否则的话-2(即在分别为a和b的条件时的两种情况; AC代码:
//#include <bits/stdc++.h>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <iostream>
#include <map>
#include <set>
#include <queue>
#include <stack>
#define N 500005
#define mem(a,b) memset(a,b,sizeof(a))
#define IOS ios::sync_with_stdio(false)
#define INF 0x3f3f3f3f
#define MOD 998244353
#define Mod 1e9 + 7
template<typename T> inline T max(T a,T b,T c){
return max(a,max(b,c));
}
template<typename T> inline T min(T a,T b,T c){
return min(a,min(b,c));
}
template<typename T> inline T max(T a,T b,T c,T d){
return max(a,max(b,c,d));
}
template<typename T> inline T min(T a,T b,T c,T d){
return min(a,min(b,c,d));
}
const int dx[]={,,,-,,,-,,-};
const int dy[]={,,,,-,,-,-,};
typedef long long ll;
using namespace std;
int main(){
ll n,a,b;
scanf("%lld",&n);
for (int i=;i<=n;i++){
scanf("%lld%lld",&a,&b);
ll t1=a*b;
ll t2=sqrt(t1);
if (t2*t2==t1){
if (a==b) printf("%lld\n",t2*-);
else printf("%lld\n",t2*-);
}
else if (t2*(t2+)<t1) printf("%lld\n",t2*-);
else printf("%lld\n",t2*-);
}
return ;
}
Tozan and Gezan(x*y<a*b)的更多相关文章
- 给定n,求1/x + 1/y = 1/n (x<=y)的解数~hdu-1299~(分解素因子详解)
链接:https://www.nowcoder.com/acm/contest/90/F来源:牛客网 题目描述 给定n,求1/x + 1/y = 1/n (x<=y)的解数.(x.y.n均为正整 ...
- 青蛙的约会 扩展欧几里得 方程ax+by=c的整数解 一个跑道长为周长为L米,两只青蛙初始位置为x,y;(x!=y,同时逆时针运动,每一次运动分别为m,n米;问第几次运动后相遇,即在同一位置。
/** 题目:青蛙的约会 链接:https://vjudge.net/contest/154246#problem/R 题意:一个跑道长为周长为L米,两只青蛙初始位置为x,y:(x!=y,同时逆时针运 ...
- 省赛i题/求1~n内所有数对(x,y),满足最大公约数是质数的对数
求1~n内所有数对(x,y),gcd(x,y)=质数,的对数. 思路:用f[n]求出,含n的对数,最后用sum[n]求和. 对于gcd(x,y)=a(设x<=y,a是质数),则必有gcd(x/a ...
- 省赛i题/求1~n内全部数对(x,y),满足最大公约数是质数的对数
求1~n内全部数对(x,y),gcd(x,y)=质数,的对数. 思路:用f[n]求出,含n的对数.最后用sum[n]求和. 对于gcd(x,y)=a(设x<=y,a是质数),则必有gcd(x/a ...
- X分钟速成Y (其中Y=Python3)
# 用井字符开头的是单行注释 """ 多行字符串用三个引号 包裹,也常被用来做多 行注释 """ ##################### ...
- 已知(x,y,z,yaw,pitch,roll)如何得到4*4的转换矩阵?
作者:Nicholas链接:https://www.zhihu.com/question/41514206/answer/104827395来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商 ...
- IOS 封装View的fram(X Y W H )
@interface UIView (Extension) @property (nonatomic, assign) CGFloat x; @property (nonatomic, assign) ...
- 最小二乘求解常数k使得kx=y(x,y为列向量)
直接求解法 取范数 \[ E(k)=\|kx-y\|^{2}\\ \] 构建最小二乘得出 \[ \arg \min (E(k))=k^2x^Tx+y^Ty-2x^Tyk \] 对k求导有 \[ 2x^ ...
- 中心极限定理(为什么y服从高斯分布)
因为每一条数据都服从IID原则: 根据中心极限定理,当数据增加的时候,样本均值的分布慢慢变成正态分布 不管分布式什么分布,累加起来都是高斯分布 As sum increases, sum of non ...
随机推荐
- java使用HSSFWorkbook下载Excel表格
@RequestMapping(value = "/exportVectorExcelN", method = RequestMethod.GET) @ResponseBody @ ...
- vuex的优缺点
vuex的优点 1.解决了非父子组件的消息传递(将数据存放在state中) 2.减少了AJAX请求次数,有些情景可以直接从内存中的state获取 vuex的缺点 1.刷新浏览器,vuex中的state ...
- GCC与G++区别
gcc和g++的区别总结:gcc: GNU C Compilerg++: GNU C++ Compiler 共同点:均属于the GNU Compiler Collection,gcc是鼻祖,后来才有 ...
- html title属性内容换行方法(静态页面)
鼠标经过悬停于对象时提示内容(title属性内容)换行排版方法,html title 换行方法总结. html的title属性默认是显示一行的,这里介绍两种换行方法为大家分享使用. 一.直接title ...
- 讯飞语音的中的bug用户校验失败
用户校验失败:原因是目录没有复制粘贴正确. 下面是刚刚下载的SDK目录: 下面的是自己Android工程中的目录:注意复制粘贴的文件路径要正确
- Equal Cut
Equal Cut 题目描述 Snuke has an integer sequence A of length N. He will make three cuts in A and divide ...
- AdminWebSessionManager AdminAuthorizingRealm ShiroConfig ShiroExceptionHandler
package org.linlinjava.litemall.admin.shiro; import com.alibaba.druid.util.StringUtils; import org.a ...
- D. Welfare State
There is a country with
- mac用python读取文件常见问题(未完成)
python读取文件常见问题(mac版) 让python的默认编码,和文件的编码保持一致
- 02-信贷路由项目rose框架拆分dubbo
项目架构和 rose 框架搭建见 https://www.cnblogs.com/yuanpeng-java/p/9835984.html 1.dubbo 框架架构及组成 2.注册中心安装及配置 h ...