《The HiBench Benchmark Suite: Characterization of the MapReduce-Based Data Analysis》内容精选

We then evaluate and characterize the Hadoop framework using HiBench, in terms of speed (i.e., job running time), throughput (i.e., the number of tasks completed per minute), HDFS bandwidth, system resource (e.g., CPU, memory and I/O) utilizations, and data access patterns.

关键内容:speed、 throughput、HDFS bandwidth、 system resource、data access patterns

the last one is an enhanced version of the DFSIO benchmark that we have extended to evaluate the aggregated bandwidth delivered by HDFS.

关键内容:evaluate the aggregated bandwidth delivered by HDFS

As shown in Fig. 1, the aggregated throughput curve has a warm-up period and a cool-down period where map tasks are launching up and shutting down respectively. Between these two periods, there is a steady period where the aggregated throughput values are stable across different time slots. Therefore, the Enhanced DFSIO workload computes the aggregated HDFS throughput by averaging the throughput value of each time slot in the steady period. In Enhanced DFSIO, when the number of concurrent map tasks at a time slot is above a specified percentage (e.g., 50% is used in our benchmarking) of the total map task slots in the Hadoop cluster, the slot is considered to be in the steady period.

关键内容:warm-up period、cool-down period、steady period、computes the aggregated HDFS throughput by averaging the throughput value of each time slot in the steady period

In essence, the TeraSort workload is similar to Sort and therefore is I/O bound in nature. However, we have compressed its shuffle data (i.e., map output) in the experiment so as to minimize the disk and network I/O during shuffle, as shown in Table III. Consequently, TeraSort have very high CPU utilization and moderate disk I/O during the map stage and shuffle phases, and moderate CPU utilization and heavy disk I/O during the reduce phases, as shown in Fig. 4.

关键内容:map stage、shuffle phases、reduce phases、high、moderate、CPU utilization、disk I/O

The best performance (total running time) of Hadoop workloads is usually obtained by accurately estimating the size of the map output, shuffle data and reduce input data, and properly allocating memory buffers to prevent multiple spilling (to disk) of those data.

关键内容:estimating the size of the map output、 shuffle data and reduce input data、allocating memory buffers

HiBench成长笔记——(7) 阅读《The HiBench Benchmark Suite: Characterization of the MapReduce-Based Data Analysis》的更多相关文章

  1. HiBench成长笔记——(2) CentOS部署安装HiBench

    安装Scala 使用spark-shell命令进入shell模式,查看spark版本和Scala版本: 下载Scala2.10.5 wget https://downloads.lightbend.c ...

  2. HiBench成长笔记——(3) HiBench测试Spark

    很多内容之前的博客已经提过,这里不再赘述,详细内容参照本系列前面的博客:https://www.cnblogs.com/ratels/p/10970905.html 创建并修改配置文件conf/spa ...

  3. HiBench成长笔记——(1) HiBench概述

    测试分类 HiBench共计19个测试方向,可大致分为6个测试类别:分别是micro,ml(机器学习),sql,graph,websearch和streaming. 2.1 micro Benchma ...

  4. HiBench成长笔记——(5) HiBench-Spark-SQL-Scan源码分析

    run.sh #!/bin/bash # Licensed to the Apache Software Foundation (ASF) under one or more # contributo ...

  5. HiBench成长笔记——(4) HiBench测试Spark SQL

    很多内容之前的博客已经提过,这里不再赘述,详细内容参照本系列前面的博客:https://www.cnblogs.com/ratels/p/10970905.html 和 https://www.cnb ...

  6. HiBench成长笔记——(11) 分析源码run.sh

    #!/bin/bash # Licensed to the Apache Software Foundation (ASF) under one or more # contributor licen ...

  7. HiBench成长笔记——(10) 分析源码execute_with_log.py

    #!/usr/bin/env python2 # Licensed to the Apache Software Foundation (ASF) under one or more # contri ...

  8. HiBench成长笔记——(9) 分析源码monitor.py

    monitor.py 是主监控程序,将监控数据写入日志,并统计监控数据生成HTML统计展示页面: #!/usr/bin/env python2 # Licensed to the Apache Sof ...

  9. HiBench成长笔记——(8) 分析源码workload_functions.sh

    workload_functions.sh 是测试程序的入口,粘连了监控程序 monitor.py 和 主运行程序: #!/bin/bash # Licensed to the Apache Soft ...

随机推荐

  1. [原]SVN代码管理

    1.SVN工程结构 branches zhangsan lisi wangwu tags project-release trunk project-trunk branches:下为trunk的分支 ...

  2. MySQL高级 InnoDB 和 MyISAM 的区别

    InnoDB:支持事务处理等不加锁读取支持外键支持行锁不支持FULLTEXT类型的索引不保存表的具体行数,扫描表来计算有多少行DELETE 表时,是一行一行的删除InnoDB 把数据和索引存放在表空间 ...

  3. Flask - 性能分析(Profiling,profiler,profile)

    1. 疑问 @app.cli.command() @click.option('--length', default=25, help='Number of functions to include ...

  4. python pandas模块简单使用(读取excel为例)

    第一步:模块安装 pip install pandas 第二步:使用(单个工作表为例) 说明:如果有多个工作表,那么只要指定sheetname=索引,(第一个工作表为0,第二个工作表为1,以此类推) ...

  5. PAT A1131 Subway Map

    dfs,选择最优路径并输出~ 这道题难度非常炸裂,要求完完整整自己推一遍,DFS才算过关!思路:一遍dfs,过程中要维护两个变量,minCnt 中途停靠最少的站.minTransfer需要换成的最少次 ...

  6. linux搭建jenkins+github详细步骤

    事情缘由: 现在在做的主要工作是通过jenkins+postman实现api的自动化测试,想要达到的效果是,api自动化测试定时跑脚本的同时,github有新的代码提交,jenkins会自动检测部署新 ...

  7. 5-2 使用antDesign的Table 及 modal(对话情景框) 功能

    1,进入antDesign官网,粘贴table代码 2,看代码各个部分实现什么功能,根据需求改代码 表格类似如下: 代码如下: const columns = [ { title: 'Name', d ...

  8. python爬虫(四) 内涵段子

    import requests import time import json from urllib import request from urllib import parse url = 'h ...

  9. JS 表单相关

    var title = $("#subjects option:selected").text();

  10. eclipse启动时权限不够的问题

    eclipse启动时权限不够的问题 2009年04月28日 19:19:00 tomey21 阅读数 1445   安装好后每次都要用root权限运行,比较郁闷,摸索了一下,修改一下相关目录的权限就可 ...