The Highest Mark

 Accepts: 71
 Submissions: 197
 Time Limit: 2000/1000 MS (Java/Others)
 Memory Limit: 131072/131072 K (Java/Others)
问题描述
2045年的SD省队选拔,赛制和三十年前已是完全不同。一场比赛的比赛时间有 tt 分钟,有 nn 道题目。
第 ii 道题目的初始分值为 A_i(A_i \leq 10^{6})A​i​​(A​i​​≤10​6​​) 分,之后每过一分钟这道题目的分值会减少 B_iB​i​​ 分,并且保证到比赛结束时分值不会减少为负值。比如,一个人在第 xx 分钟结束时做出了第 ii 道题目,那么他/她可以得到 A_i - B_i * xA​i​​−B​i​​∗x 分。
若一名选手在第 xx 分钟结束时做完了一道题目,则他/她可以在第 x+1x+1 分钟开始时立即开始做另一道题目。
参加省队选拔的选手 dxy 具有绝佳的实力,他可以准确预测自己做每道题目所要花费的时间,做第 ii 道需要花费 C_i(C_i \leq t)C​i​​(C​i​​≤t) 分钟。由于 dxy 非常神,他会做所有的题目。但是由于比赛时间有限,他可能无法做完所有的题目。他希望安排一个做题的顺序,在比赛结束之前得到尽量多的分数。
输入描述
第一行为一个正整数 T(T \leq 10)T(T≤10),表示数据组数(n>200n>200的数据不超过55组)。
对于每组数据,第一行为两个正整数 n (n \leq 1000)n(n≤1000) 和 t (t \leq 3000)t(t≤3000), 分别表示题目数量和比赛时间。接下来有 nn 行,每行 33 个正整数依次表示 A_i, B_i, C_iA​i​​,B​i​​,C​i​​,即此题的初始分值、每分钟减少的分值、dxy做这道题需要花费的时间。
输出描述
对于每组数据输出一行一个整数,代表dxy这场比赛最多能得多少分
输入样例
1
4 10
110 5 9
30 2 1
80 4 8
50 3 2
输出样例
88
Hint
dxy先做第二题,再做第一题,第一题得分为110-5*(1+9)=60110−5∗(1+9)=60,第二题得分为30-2*1=2830−2∗1=28,总得分为8888,其他任何方案的得分都小于8888

题解:

这道题考察的是贪心思想和动态规划。

首先我们考虑,假如我们已经确定了要做哪些题目,按什么顺序做这些题目最好。

假设已经确定了要做其中的mm道题,某一个方案中做题的顺序是依次做x_{1},x_{2}\rightarrow{x}_{m}x​1​​,x​2​​→x​m​​,那么对于这个方案中任意的相邻两项{x}_{i}x​i​​,{x}_{i+1}x​i+1​​,考虑交换这两项的顺序,方案是否会变得更优,交换方案中的相邻两项,只会对这两道题的得分有影响,对其余的题目不会产生影响。

如果不交换这两项,损失的分数是 C_{x_{i}}
* B_{x_{i+1}} + KC​x​i​​​​∗B​x​i+1​​​​+K,如果交换这两项,损失的分数是C_{x_{i+1}}
* B_{x_{i}} + KC​x​i+1​​​​∗B​x​i​​​​+K (K是一个常数)
所以只需要判断是否 C_{x_{i}} * B_{x_{i+1}} \leq C_{x_{i+1}} * B_{x_{i}}
+ KC​x​i​​​​∗B​x​i+1​​​​≤C​x​i+1​​​​∗B​x​i​​​​+K,如果此不等式成立,那么应该交换这两项。对上式移项得 B_{x_{i+1}}
/ C_{x_{i+1}} > B_{x_{i}} / C_{x_{i}}B​x​i+1​​​​/C​x​i+1​​​​>B​x​i​​​​/C​x​i​​​​。所以对于一个确定的题目集合,做题的最优顺序只与每道题目的B_i
/ C_iB​i​​/C​i​​有关,按每道题目扣分速度与做题时间的比值排序,按照比值从大到小做题。

因此我们先对所有的题目按照这个比值进行排序,接下来,只要按照排好的顺序,选择做哪些题目就可以了。这相当于一个简单的“背包问题”,使用动态规划来解决。{dp}_idp​i​​表示恰好用了ii分钟的最高得分。状态转移方程为{dp}_i
= \max_{1\leq j\leq n}{dp}_{i-C_j} + A_j - (i * B_j)dp​i​​=max​1≤j≤n​​dp​i−C​j​​​​+A​j​​−(i∗B​j​​)。

最终答案是\max_{0
\leq i \leq t}{dp_i}max​0≤i≤t​​dp​i​​。

写的时候没有管排序,哭啊。。。。我之前想当然地以为排序没什么关系。。。这回也算是得到一个教训,01背包做之前要想好排序啊。。。。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#pragma warning(disable:4996)
using namespace std; int n,t;
struct no
{
int value;
int minus;
int time;
}node[2002]; long long dp[4005]; bool cmp(no n1,no n2)
{
return (double)(n1.minus)/(double)(n1.time) > (double)(n2.minus)/(double)(n2.time);
} int main()
{
//freopen("i.txt","r",stdin);
//freopen("o.txt","w",stdout);
int i,j;
int test;
long long ans;
cin>>test;
while(test--)
{
memset(dp,0,sizeof(dp));
scanf("%d%d",&n,&t);
for(i=0;i<n;i++)
{
scanf("%d%d%d",&node[i].value,&node[i].minus,&node[i].time);
}
ans=0;
sort(node,node+n,cmp);
for(i=0;i<n;i++)
{
for(j=t-node[i].time ;j>=0;j--)//这里只是为了满足01背包,没有确切含义。因为本身也要满足j+node[i].time<=t,所以就直接从这里开始了
{
dp[j+node[i].time]=max(dp[j+node[i].time],dp[j] + node[i].value - node[i].minus*(j+node[i].time));
ans =max(ans,dp[j+node[i].time]);
//此时的t本身就代表了第t时刻的最大值
}
}
cout<<ans<<endl;
}
return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

HDU 5501:The Highest Mark 01背包的更多相关文章

  1. HDU 5501 The Highest Mark

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5501 The Highest Mark  Accepts: 32  Submissions: 193 ...

  2. HDU 5501 The Highest Mark 背包dp

    The Highest Mark Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?p ...

  3. The Highest Mark(01背包)

    The Highest Mark Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  4. HDU 5501——The Highest Mark——————【贪心+dp】

    The Highest Mark Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  5. HDU 5501 The Highest Mark (贪心+DP,经典)

    题意: 有n道题目,每道题目的初始分数为Ai,分数每分钟减少Bi,完成此题需要Ci分钟,问在t分钟内最多能获得多少分? 思路: 好题~ 如果没有B的话,就是一道裸的01背包的题目了.每道题目的得分为: ...

  6. hdu 5501 The Highest Mark(贪心+01背包)

    题意:类似cf的赛制,每道题目有A,B,C三个值,A表示初始分数,B表示每分钟题的分数会减少B,C表示做这道题需要C分钟,数据保证分数不会变为负数.现在给出比赛时长,问安排做题的顺序,求最大得分. 思 ...

  7. HDU 5234 Happy birthday --- 三维01背包

    HDU 5234 题目大意:给定n,m,k,以及n*m(n行m列)个数,k为背包容量,从(1,1)开始只能往下走或往右走,求到达(m,n)时能获得的最大价值 解题思路:dp[i][j][k]表示在位置 ...

  8. HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解)

    HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解) 题意分析 要先排序,在做01背包,否则不满足无后效性,为什么呢? 等我理解了再补上. 代码总览 #in ...

  9. HDOJ(HDU).2546 饭卡(DP 01背包)

    HDOJ(HDU).2546 饭卡(DP 01背包) 题意分析 首先要对钱数小于5的时候特别处理,直接输出0.若钱数大于5,所有菜按价格排序,背包容量为钱数-5,对除去价格最贵的所有菜做01背包.因为 ...

随机推荐

  1. 【PAT甲级】1007 Maximum Subsequence Sum (25 分)

    题意: 给出一个整数K(K<=10000),输入K个整数.输出最大区间和,空格,区间起点的数值,空格,区间终点的数值.如果有相同的最大区间和,输出靠前的.如果K个数全部为负,最大区间和输出0,区 ...

  2. eclipse导入项目上面有个红叉X

    问题: 今天突然想到一个以前做过的项目,想导入到新环境中,发现不管咱整都一个红叉X, 我记得以前好像碰到过类似的问题,当时三秒搞定,谁知道时间一长,三分钟没有搞定. 还是记录下: 一般导入项目出错,肯 ...

  3. 使用TortoiseGit处理代码冲突

    使用TortoiseGit处理代码冲突  https://www.cnblogs.com/jason-beijing/p/5718190.html 场景一  user0 有新提交 user1 没有pu ...

  4. idea右键新建选项没有类和包的创建方式

    Intelidea创建好项目之后,右键新建Java class的时候发现没有改选项,只有以下几个选项 把sec目录设为源码目录,首先打开Project Structure

  5. Android Studio中 no module 问题,解决方法

    等它执行完以后就好了 或者根据提示手动下载缺失的.

  6. 「CF1023F」Mobile Phone Network

    「CF1023F」Mobile Phone Network 传送门 直接钦定那 \(k\) 条边在最小生成树中,然后把最小生成树树剖一下. 每条其它边的效果就是把该边端点路径上的边的权对该边边权取 \ ...

  7. SVM数学原理推导

    //2019.08.17 #支撑向量机SVM(Support Vector Machine)1.支撑向量机SVM是一种非常重要和广泛的机器学习算法,它的算法出发点是尽可能找到最优的决策边界,使得模型的 ...

  8. Ubuntu16.04深度学习基本环境搭建,tensorflow , keras , pytorch , cuda

    Ubuntu16.04深度学习基本环境搭建,tensorflow , keras , pytorch , cuda Ubuntu16.04安装 参考https://blog.csdn.net/flyy ...

  9. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 表单:文本框(Textarea)

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  10. Spark教程——(1)安装Spark

    Cloudera Manager介绍     Cloudera Manager(简称CM)是Cloudera公司开发的一款大数据集群安装部署利器,这款利器具有集群自动化安装.中心化管理.集群监控.报警 ...