UOJ192 最强跳蚤
problem
给出一个n个点带边权的树,问有多少对\((u,v)\)满足\(u\)到\(v\)路径上边权的乘积为完全平方数。
\(n\le 10^5,w\le 10^8\)
solution
一个比较朴素的处理方法就是:设第i个质因子权值为\(2^{i-1}\),将每个边权质因子分解,并将所有质因子的权值异或起来,然后得到一个新的权值。这样问题就转化为了求有多少对\((u,v)\)满足从\(u\)到\(v\)路径上的权值异或和为0。直接书上前缀和一下就行。
但是当\(w=10^8\)时显然不行,考虑给每个质因子随机赋一个\([0,2^{64}]\)中的值,然后用同样的方法异或起来。这样满足条件的路径一定可以被找到。不满足条件的路径只有\(\frac{1}{2^{64}}\)误算。
然后考虑如何计算每个数字的质因子,先线性筛出\([1,\sqrt{w}]\)中的质因子,并对其重新赋权值。对于大于\(\sqrt{w}\)的质因子单独处理一下。
code
/*
* @Author: wxyww
* @Date: 2020-02-05 16:57:50
* @Last Modified time: 2020-02-05 18:21:14
*/
#include<map>
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<bitset>
#include<cstring>
#include<algorithm>
#include<string>
#include<queue>
#include<vector>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int N = 100010;
ll read() {
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
struct node {
int v,nxt;ull w;
}e[N << 1];
int head[N],ejs;
void add(int u,int v,ull w) {
e[++ejs].v = v;e[ejs].nxt = head[u];head[u] = ejs;e[ejs].w = w;
}
map<int,ull>ma;
ull Rand() {
return (ull)rand() * (ull)rand() * (ull)rand() * (ull)rand() * (ull)rand();
}
ull val[N];
int vis[N],pri[N],tot;
void pre() {
for(int i = 2;i <= 10000;++i) {
if(!vis[i]) {
pri[++tot] = i;
val[tot] = Rand();
}
for(int j = 1;j <= tot && i * pri[j] <= 10000;++j) {
vis[pri[j] * i] = 1;
if(i % pri[j] == 0) break;
}
}
}
ull get(int x) {
ull ret = 0;
for(int i = 1;i <= tot;++i) {
while(x % pri[i] == 0) {
x /= pri[i];
ret ^= val[i];
}
}
if(x != 1) {
if(!ma.count(x)) ma[x] = Rand();
ret ^= ma[x];
}
return ret;
}
ull dis[N];
ll anss;
map<ull,int>ans;
void dfs(int u,int fa) {
anss += ans[dis[u]] * 2;
ans[dis[u]]++;
for(int i = head[u];i;i = e[i].nxt) {
int v = e[i].v;if(v == fa) continue;
dis[v] = dis[u] ^ e[i].w;
dfs(v,u);
}
}
int main() {
pre();
int n = read();
for(int i = 1;i < n;++i) {
int u = read(),v = read();ull w = get(read());
add(u,v,w);add(v,u,w);
}
dfs(1,0);
cout<<anss;
return 0;
}
UOJ192 最强跳蚤的更多相关文章
- UOJ #192 【UR #14】 最强跳蚤
题目链接:最强跳蚤 这道题本来不想写博客的--但是鉴于自己犯了低级错误,还是写篇博客记载一下. 一开始我的想法和题解里面的算法而比较类似,也是先分解质因数,然后用质因子是否出现偶数次来判断当前这个数是 ...
- uoj192 【UR #14】最强跳蚤
题目 和成爷达成一致,被卡随机的话就是过了 考虑一个完全平方数的所有质因子次幂一定是偶数,于是对于每一条边我们都只保留其出现次数为奇数的质因子 注意到有一个点的\(w\leq 80\),于是考虑状压质 ...
- (GDOI2018模拟九)【UOJ#192】【UR#14】最强跳蚤
(开头先Orz myh) 原题目: 在人类和跳蚤的战争初期,人们凭借着地理优势占据了上风——即使是最强壮的跳蚤,也无法一下越过那一堵坚固的城墙. 在经历了惨痛的牺牲后,跳蚤国王意识到再这样下去,跳蚤国 ...
- UOJ#192. 【UR #14】最强跳蚤
题目链接 http://uoj.ac/problem/192 暑期课第二天 树上问题进阶 具体内容看笔记博客吧 题意 n个节点的树T 边有边权w 求满足(u, v)上所有边权乘积为完全平方数的路径有多 ...
- 【uoj#192】[UR #14]最强跳蚤 Hash
题目描述 给定一棵 $n$ 个点的树,边有边权.求简单路径上的边的乘积为完全平方数的点对 $(x,y)\ ,\ x\ne y$ 的数目. 题解 Hash 一个数是完全平方数,当且仅当每个质因子出现次数 ...
- 【胡策篇】题解 (UOJ 192 + CF938G + SPOJ DIVCNT2)
和泉纱雾与烟花大会 题目来源: UOJ 192 最强跳蚤 (只改了数据范围) 官方题解: 在这里哦~(说的很详细了 我都没啥好说的了) 题目大意: 求树上各边权乘积是完全平方数的路径数量. 这种从\( ...
- boost强分类器的实现
boost.cpp文件下: bool CvCascadeBoost::train( const CvFeatureEvaluator* _featureEvaluator, int _numSampl ...
- 一点做用户画像的人生经验(一):ID强打通
1. 背景 在构建精准用户画像时,面临着这样一个问题:日志采集不能成功地收集用户的所有ID,且每条业务线有各自定义的UID用来标识用户,从而造成了用户ID的零碎化.因此,为了做用户标签的整合,用户ID ...
- 基于英特尔® 至强™ 处理器 E5 产品家族的多节点分布式内存系统上的 Caffe* 培训
原文链接 深度神经网络 (DNN) 培训属于计算密集型项目,需要在现代计算平台上花费数日或数周的时间方可完成. 在最近的一篇文章<基于英特尔® 至强™ E5 产品家族的单节点 Caffe 评分和 ...
随机推荐
- windows远程linux的方法(不用xshell)
先cmd进入DOS,再输入命令ssh root@要远程的linux的ip 输入密码 即可进入linux后台.如下图,即为edr后台,可以见到unabackup服务了. 如果是多次远程不同IP,第二次远 ...
- node环境下:node_modules里面的文件
node环境下:node_modules里面的文件 package.json来制定名单,需要哪些npm包来参与到项目中来,npm install命令根据这个配置文件增减来管理本地的安装包. depen ...
- GO TIME
#go语言的time包 ##组成 time.Duration(时长,耗时) time.Time(时间点) time.C(放时间点的管道)[ Time.C:=make(chan time.Time) ] ...
- 使用命令将单个java文件打包为jar
思路:先将java文件编译为class文件,然后再打包为jar 参考博文:https://www.cnblogs.com/sxdcgaq8080/p/8126770.html http://www.m ...
- SSL 证书格式普及,PEM、CER、JKS、PKCS12
根据不同的服务器以及服务器的版本,我们需要用到不同的证书格式,就市面上主流的服务器来说,大概有以下格式: .DER .CER,文件是二进制格式,只保存证书,不保存私钥. .PEM,一般是文本格式,可保 ...
- ➡️➡️➡️IELTS reading by Simon on Bili
高分必备 雅思考官Simon手把手教你做阅读 p1 https://www.bilibili.com/video/av40131278?p=2 p2 https://www.bilibili.com/ ...
- The Captain 题解
20200216题目题解 这是一篇题解祭题解记,但一共就一道题目.(ROS菜大了) 题目如下: The Captain 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x ...
- 开关机安全控制!(设置进入bois的密码)
1.调整 BOIS 引导设置(1)将第一引导设备设为当前系统所在硬盘 (2)设置管理员密码 (3)进入bois后如图所示需输入bols密码才能登入
- PSP第二次总结
项目计划总结: 姓名:李志强 日期:2017/12/06 听课 编程 阅读课本 准备考试 日总计 周日11.26 周一 100 100 周二 ...
- PAT甲级2019冬季考试题解
A Good In C纯模拟题,用string数组读入数据,注意单词数量的判断 #include<bits/stdc++.h> using namespace std; ; ][]; in ...