数学--数论--Miller_Rabin判断一个大数是不是素数(随机算法)
前提知识
1,费马定理:ap−1=1(mod p)a^{p-1}=1(mod\ p)ap−1=1(mod p)点我
2,二次探测定理:x2≡1(mod p)⇒x=1∣∣p−1x^{2}\equiv 1(mod\ p)\Rightarrow x=1||p-1x2≡1(mod p)⇒x=1∣∣p−1点我
但我们注意到,费马定理其逆定理不能直接用来判断素数,必须要枚举很多数,一般情况下我们可以枚举到1000左右,就可以把long long范围内的大部分数给判断完成。
也有例外,即存在一种极端反例卡迈克尔数(一种合数),对于任何卡迈克尔叔,费马定理都成立。虽然这种极少,在1e8范围内的整数中,只有255个卡迈克尔数。但不管怎么说还是会被出题人卡死,或者被人hack,虽然这种算法的出错率为4^-k(k为测试数据的个数)。
而为了防止这种情况出现,有一种东西,叫二次探测定理:
如果p是奇素数,则 x≡1(mod p)的解为x=1或x=p-1(mod p),这个由模运算的性质易得。

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<ctime>
using namespace std;
typedef long long ll;
const int N = 1e5 + 7;
const int times = 10;
ll fast_mod(ll a,ll b,ll mod)//计算2^q的过程
{
ll res = 0;
while(b){
if(b & 1) res = res + a;
a <<= 1;
if(a >= mod) a -= mod;
if(res >= mod) res -= mod;
b >>= 1;
}
return res;
}
ll fast_pow_mod(ll a,ll b,ll mod)//快速幂算出a^m
{
ll res = 1;
while(b){
if(b & 1) res = (res * a) % mod;
a = (a * a) % mod;
b >>= 1;
}
return res;
}
bool check(ll a,ll m,ll p,ll n)//对于每次随机的a进行测试
{
ll temp = fast_pow_mod(a,m,n),ret = temp;
for(int i = 0;i < p;++i){
ret = fast_mod(temp,temp,n);
if(ret == 1 && temp != n - 1 && temp != 1) return true;
temp = ret;
}
return ret != 1;
}
bool Miller_Pabin(ll n)//Miller测试的主体结构
{
if(n < 2) return false;
if(n == 2) return true;
if(n & 1 == 0) return false;//对于偶数的优化
ll p = 0,x = n - 1;//p为Miller测试的q,x为Miller测试的m
while(x & 1 == 0){
x >>= 1;
p++;
}
srand(time(NULL));
for(int i = 0;i < times;++i){
ll o = rand() % (n - 1) + 1;//o就是Miller测试的底数a
if(check(o,x,p,n)) return false;
}
return true;
}
int main()
{
ios::sync_with_stdio(false);
int t;
cin >> t;
while(t--){
long long n;
cin >> n;
cout << (Miller_Pabin(n) ? "Prime" : "Not a Prime") << endl;
}
return 0;
}
数学--数论--Miller_Rabin判断一个大数是不是素数(随机算法)的更多相关文章
- 数学--数论--Miller_Rabin判断素数
ACM常用模板合集 #include<iostream> #include<algorithm> #include<cstring> #include<cst ...
- zoj 月赛B题(快速判断一个大数是否为素数)
给出一个64位的大数,如何快速判断其是否为素数 #include<algorithm> #include<cstdio> #include<cstring> #in ...
- 『转载』判断一个正整数是不是素数,时间复杂度为O(根号n)
原文链接:https://blog.csdn.net/liangdagongjue/article/details/77895170#commentsedit PS:新手上路,实在找不到怎么转载,所以 ...
- 数论 - Miller_Rabin素数测试 + pollard_rho算法分解质因数 ---- poj 1811 : Prime Test
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29046 Accepted: 7342 Case ...
- JAVA 写一个方法,判断一个整数是否为素数
1 import java.util.Scanner; 2 3 public class Question3 { 4 public static void main(String[] args) { ...
- NOIP复习之1 数学数论
noip一轮复习真的要开始啦!!! 大概顺序是这样的 1.数学 2.搜索贪心 3.数据结构 4.图论 5.dp 6.其他 数学 1.数论 数论被称为数学皇冠上的明珠,他的重要性主要在于它是其他学习的祖 ...
- C++判断一个数字是否为质数
关于素数的算法是程序竞赛比较重要的数论知识,我们来看通常会使用的几个算法. 我们先来复习几个基本概念: 质数:对于大于1的自然数,若除了1和它本身,没有别的因数,则称这个数为质数,质数也叫素数.反之, ...
- P2626 斐波那契数列(升级版)(合数的质数分解, 大数为素数的概率十分小的利用)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1)=1f(1) = 1 f(1)=1 f(2)=1f(2) = 1f(2)=1 f(n)=f(n−1)+f(n−2)f(n) = f ...
- 很火的Java题——判断一个整数是否是奇数
完成以下代码,判断一个整数是否是奇数: public boolean isOdd(int i) 看过<编程珠玑>的人都知道这道题的答案和其中极为简单的道理. 最普遍的风格,如下: 这个函数 ...
随机推荐
- python学习 0 python简介
一.Python简介 python是一门简单易学又功能强大的编程语言.它具有高效的高级数据结构和简单而有效的面向对象编程的特性.python优雅的语法和动态类型.以及其解释性的性质,使它在许多领域和大 ...
- Linux网络安全篇,进入SELinux的世界(四)
SELinux的策略与规则管理set 1.安装SELInux工具 yum install setools-console 2.基本的命令 seinfo [-Atrub] -A ===> 列出SE ...
- Markdown语法详解-cnblog
博客的重要性 博客,英文名为Blog,它的正式名称为网络日记. 为什么要写博客? 需要总结和思考.有时候我们一直在赶路,却忘了放慢脚步 提升文笔组织能力 提升学习总结能力 提升逻辑思维能力 帮助他人, ...
- Linux环境安装Docker
1. 使用APT安装 # 更新数据源 apt-get update # 安装所需依赖 apt-get -y install apt-transport-https ca-certificates cu ...
- http的请求头都有那些信息
每个HTTP请求和响应都会带有相应的头部信息.默认情况下,在发送XHR请求的同时,还会发送下列头部信息: Accept:浏览器能够处理的内容类型 Accept-Charset:浏览器能够显示的字符集 ...
- 记录:如何使用ASP.NET Core和EnityFramework Core实现服务和数据分离
前情提要: 现有一个网站框架,包括主体项目WebApp一个,包含 IIdentityUser 接口的基架项目 A.用于处理用户身份验证的服务 AuthenticationService 位于命名空间B ...
- git多人协作操作流程
git协作工作流程 git checkout work 自己工作分支工作 git commit -a -m ''自己工作分支提交 git checkout master 切换到主分支 git pull ...
- [linux] 权限问题
权限问题一直蒙蒙的,下面就是总结一下!(原文链接:http://www.cnblogs.com/chengJAVA/p/4319420.html) 指令名称:chmod 使用权限 : 所有使用者 使用 ...
- 【题解】P2480 [SDOI2010]古代猪文 - 卢卡斯定理 - 中国剩余定理
P2480 [SDOI2010]古代猪文 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 猪王国的文明源远流长,博大精 ...
- 重大更新!Druid 0.18.0 发布—Join登场,支持Java11
Apache Druid本质就是一个分布式支持实时数据分析的数据存储系统. 能够快速的实现查询与数据分析,高可用,高扩展能力. 距离上一次更新刚过了二十多天,距离0.17版本刚过了三个多月,Druid ...