数学--数论--Miller_Rabin判断一个大数是不是素数(随机算法)
前提知识
1,费马定理:ap−1=1(mod p)a^{p-1}=1(mod\ p)ap−1=1(mod p)点我
2,二次探测定理:x2≡1(mod p)⇒x=1∣∣p−1x^{2}\equiv 1(mod\ p)\Rightarrow x=1||p-1x2≡1(mod p)⇒x=1∣∣p−1点我
但我们注意到,费马定理其逆定理不能直接用来判断素数,必须要枚举很多数,一般情况下我们可以枚举到1000左右,就可以把long long范围内的大部分数给判断完成。
也有例外,即存在一种极端反例卡迈克尔数(一种合数),对于任何卡迈克尔叔,费马定理都成立。虽然这种极少,在1e8范围内的整数中,只有255个卡迈克尔数。但不管怎么说还是会被出题人卡死,或者被人hack,虽然这种算法的出错率为4^-k(k为测试数据的个数)。
而为了防止这种情况出现,有一种东西,叫二次探测定理:
如果p是奇素数,则 x≡1(mod p)的解为x=1或x=p-1(mod p),这个由模运算的性质易得。

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<ctime>
using namespace std;
typedef long long ll;
const int N = 1e5 + 7;
const int times = 10;
ll fast_mod(ll a,ll b,ll mod)//计算2^q的过程
{
ll res = 0;
while(b){
if(b & 1) res = res + a;
a <<= 1;
if(a >= mod) a -= mod;
if(res >= mod) res -= mod;
b >>= 1;
}
return res;
}
ll fast_pow_mod(ll a,ll b,ll mod)//快速幂算出a^m
{
ll res = 1;
while(b){
if(b & 1) res = (res * a) % mod;
a = (a * a) % mod;
b >>= 1;
}
return res;
}
bool check(ll a,ll m,ll p,ll n)//对于每次随机的a进行测试
{
ll temp = fast_pow_mod(a,m,n),ret = temp;
for(int i = 0;i < p;++i){
ret = fast_mod(temp,temp,n);
if(ret == 1 && temp != n - 1 && temp != 1) return true;
temp = ret;
}
return ret != 1;
}
bool Miller_Pabin(ll n)//Miller测试的主体结构
{
if(n < 2) return false;
if(n == 2) return true;
if(n & 1 == 0) return false;//对于偶数的优化
ll p = 0,x = n - 1;//p为Miller测试的q,x为Miller测试的m
while(x & 1 == 0){
x >>= 1;
p++;
}
srand(time(NULL));
for(int i = 0;i < times;++i){
ll o = rand() % (n - 1) + 1;//o就是Miller测试的底数a
if(check(o,x,p,n)) return false;
}
return true;
}
int main()
{
ios::sync_with_stdio(false);
int t;
cin >> t;
while(t--){
long long n;
cin >> n;
cout << (Miller_Pabin(n) ? "Prime" : "Not a Prime") << endl;
}
return 0;
}
数学--数论--Miller_Rabin判断一个大数是不是素数(随机算法)的更多相关文章
- 数学--数论--Miller_Rabin判断素数
ACM常用模板合集 #include<iostream> #include<algorithm> #include<cstring> #include<cst ...
- zoj 月赛B题(快速判断一个大数是否为素数)
给出一个64位的大数,如何快速判断其是否为素数 #include<algorithm> #include<cstdio> #include<cstring> #in ...
- 『转载』判断一个正整数是不是素数,时间复杂度为O(根号n)
原文链接:https://blog.csdn.net/liangdagongjue/article/details/77895170#commentsedit PS:新手上路,实在找不到怎么转载,所以 ...
- 数论 - Miller_Rabin素数测试 + pollard_rho算法分解质因数 ---- poj 1811 : Prime Test
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29046 Accepted: 7342 Case ...
- JAVA 写一个方法,判断一个整数是否为素数
1 import java.util.Scanner; 2 3 public class Question3 { 4 public static void main(String[] args) { ...
- NOIP复习之1 数学数论
noip一轮复习真的要开始啦!!! 大概顺序是这样的 1.数学 2.搜索贪心 3.数据结构 4.图论 5.dp 6.其他 数学 1.数论 数论被称为数学皇冠上的明珠,他的重要性主要在于它是其他学习的祖 ...
- C++判断一个数字是否为质数
关于素数的算法是程序竞赛比较重要的数论知识,我们来看通常会使用的几个算法. 我们先来复习几个基本概念: 质数:对于大于1的自然数,若除了1和它本身,没有别的因数,则称这个数为质数,质数也叫素数.反之, ...
- P2626 斐波那契数列(升级版)(合数的质数分解, 大数为素数的概率十分小的利用)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1)=1f(1) = 1 f(1)=1 f(2)=1f(2) = 1f(2)=1 f(n)=f(n−1)+f(n−2)f(n) = f ...
- 很火的Java题——判断一个整数是否是奇数
完成以下代码,判断一个整数是否是奇数: public boolean isOdd(int i) 看过<编程珠玑>的人都知道这道题的答案和其中极为简单的道理. 最普遍的风格,如下: 这个函数 ...
随机推荐
- Go语言 中文分词技术使用技巧(一)
分词技术就是搜索引擎针对用户提交查询的关键词串进行的查询处理后根据用户的关键词串用各种匹配方法进行分词的一种技术. 中文分词(Chinese Word Segmentation)指的是将一个汉字序列( ...
- Maybatis的一些总结(三:增删改查)
回顾一个点 之前不懂这句: UserMapper userMapper = sqlSession.getMapper(UserMapper.class); 现在理解了一点点,相当于实现了userMap ...
- SpringMVC框架详细教程(四)_使用maven导入各个版本的Spring依赖包
使用maven导入Spring依赖包 上一节讲了如何向动态Web项目添加下载的Spring依赖包,作为补充下面列出了如何使用 maven 导入Spring的依赖包,可以选择需要的导入(推荐)或者全部导 ...
- Markdown 语法自用
Markdown 语法自用 1. 标题 用#来标记 hi hihi hihihi hihihiih hihihihihi hihihihihihi 2. 段落格式 2.1 字体 斜体:文字两端加上 ...
- Java程序员必备:序列化全方位解析
前言 相信大家日常开发中,经常看到Java对象"implements Serializable".那么,它到底有什么用呢?本文从以下几个角度来解析序列这一块知识点~ 什么是Java ...
- 在众多小说中,Python告诉你哪本小说好看
前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: 有趣的Python PS:如有需要Python学习资料的小伙伴可以 ...
- Daily Scrum 1/14/2016
Zhaoyang & Yandong: Still optimizing the speech input interface Dong & Fuchen: Image asynchr ...
- How Many Answers Are Wrong HDU - 3038 (经典带权并查集)
题目大意:有一个区间,长度为n,然后跟着m个子区间,每个字区间的格式为x,y,z表示[x,y]的和为z.如果当前区间和与前面的区间和发生冲突,当前区间和会被判错,问:有多少个区间和会被判错. 题解:x ...
- PHP函数:memory_get_usage
memory_get_usage() -返回分配给 PHP 的内存量 说明: memory_get_usage ([ bool $real_usage = false ] ) : int 参数: r ...
- HTTPoxy漏洞(CVE-2016-5385)复现记录
漏洞介绍: httpoxy是cgi中的一个环境变量:而服务器和CGI程序之间通信,一般是通过进程的环境变量和管道. CGI介绍 CGI 目前由 NCSA 维护,NCSA 定义 CGI 如下:CGI(C ...