题意

求\(\sum_{i=1}^{n} \sum_{j=1}^{m} (n \ mod \ i)(m \ mod \ j)[i \neq j] \ mod \ 19940417\), \((n, m \le 10^9)\)

分析

以下均设\(n \le m\)

$$
\begin{align}
&
\sum_{i=1}^{n} \sum_{j=1}^{m} (n \ mod \ i)(m \ mod \ j)[i \neq j] \ mod \ 19940417
\\

\equiv &

\left(

\sum_{i=1}^{n}

\sum_{j=1}^{m}

(n \ mod \ i)(m \ mod \ j)

\sum_{i=1}^{n}

(n \ mod \ i \cdot m \ mod \ i)

\right)

\ mod \ 19940417

\

\equiv &

\left(

\left(

\sum_{i=1}^{n}

(n \ mod \ i)

\right)

\left(

\sum_{j=1}^{m}

(m \ mod \ i)

\right)

\sum_{i=1}^{n}

(n \ mod \ i \cdot m \ mod \ i)

\right)

\ mod \ 19940417

\

\end{align}

\[</p>

于是我们只需要快速求出$\sum_{i=1}^{n} ( n \ mod \ i)$和$\sum_{i=1}^{n} ( n \ mod \ i \cdot m \ mod \ i )$就能解决问题了。

<p>
\]

\begin{align}

& \sum_{i=1}^{n} ( n \ mod \ i)

\

= &

\sum_{i=1}^{n}

\left( n - i \left \lfloor \frac{n}{i} \right \rfloor \right)

\

= &

n^2

\sum_{i=1}^{n}

i \left \lfloor \frac{n}{i} \right \rfloor

\

& \sum_{i=1}^{n} ( n \ mod \ i \cdot \ m \ mod \ i)

\

= &

\sum_{i=1}^{n}

\left( n - i \left \lfloor \frac{n}{i} \right \rfloor \right) \left( m - i \left \lfloor \frac{m}{i} \right \rfloor \right)

\

= &

n^2m

+

\sum_{i=1}^{n}

i^2 \left \lfloor \frac{n}{i} \right \rfloor \left \lfloor \frac{m}{i} \right \rfloor

n\sum_{i=1}^{n}

i \left \lfloor \frac{m}{i} \right \rfloor

m\sum_{i=1}^{n}

i \left \lfloor \frac{n}{i} \right \rfloor

\

\end{align}

\[</p>

## 题解
于是分块大法好...

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mo=19940417;
ll cal(int n, ll a) {
ll ret=a%mo*n%mo, tp=0;
for(int i=1, pos=0; i<=n; i=pos+1) {
pos=n/(n/i);
tp+=(a/i)%mo*(((ll)(pos+1)*pos/2-(ll)(i-1)*i/2)%mo)%mo;
if(tp>=mo) {
tp-=mo;
}
}
return (ret-tp+mo)%mo;
}
int main() {
int n, m;
scanf("%d%d", &n, &m);
if(n>m) {
swap(n, m);
}
printf("%lld\n", (cal(n, n)*cal(m, m)%mo-cal(n, (ll)n*m)+mo)%mo);
return 0;
}\]

【BZOJ】2956: 模积和的更多相关文章

  1. BZOJ 2956 模积和 (数学推导+数论分块)

    手动博客搬家: 本文发表于20170223 16:47:26, 原地址https://blog.csdn.net/suncongbo/article/details/79354835 题目链接: ht ...

  2. BZOJ 2956 模积和

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2956 题意:给出n和m.计算: 思路: i64 n,m; i64 cal(i64 m,i ...

  3. [Bzoj 2956] 模积和 (整除分块)

    整除分块 一般形式:\(\sum_{i = 1}^n \lfloor \frac{n}{i} \rfloor * f(i)\). 需要一种高效求得函数 \(f(i)\) 的前缀和的方法,比如等差等比数 ...

  4. BZOJ 2956 模积和(分块)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2956 [题目大意] 求∑∑((n%i)*(m%j))其中1<=i<=n,1 ...

  5. bzoj 2956: 模积和 ——数论

    Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...

  6. 【BZOJ】2956:模积和

    Time Limit: 10 Sec  Memory Limit: 128 MB Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j ...

  7. 「BZOJ 2956」模积和

    「BZOJ 2956」模积和 令 \(l=\min(n,m)\).这个 \(i\neq j\) 非常不优雅,所以我们考虑分开计算,即: \[\begin{aligned} &\sum_{i=1 ...

  8. BZOJ_2956_模积和_数学

    BZOJ_2956_模积和_数学 Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数 ...

  9. P2260 [清华集训2012]模积和

    P2260 [清华集训2012]模积和 整除分块+逆元 详细题解移步P2260题解板块 式子可以拆开分别求解,具体见题解 这里主要讲的是整除分块(数论分块)和mod不为素数时如何求逆元 整除分块:求Σ ...

随机推荐

  1. eclipse 创建项目时出现appcompat_v7?

    建项目时不出现appcompat_v7包的方法.既然appcompat_v7包是一个能让2.1以上全使用上4.0版本的界面的支持库,那么如图所示,我们建项目时直接把最小SDK选在Android4.0以 ...

  2. “init terminating in do_boot” Windows10 Rabbit MQ fails to start

    在Windows 10环境下安装rabbitmq-server-3.6.2后,CMD中运行命令:rabbitmq-plugins enable rabbitmq_management 报错: { , ...

  3. 攻城狮在路上(叁)Linux(十一)--- 用户与用户组、文件权限、目录配置

    一.用户与用户组: 3个概念:文件所有者(user).用户组(group).其他人(others). /etc/passwd  <==存放所有的用户名 /etc/shadow  <==存放 ...

  4. 攻城狮在路上(壹) Hibernate(十六)--- Hibernate声明数据库事务

    一.数据库事务的概念: 数据库的ACID特征:Atomic.Consistency.Isolation.Durability.原子性.一致性.隔离性.持久性.不同的隔离级别引发的不同问题. 事务的AC ...

  5. W:Failed to fetch http://archive.ubuntukylin.com:10006/ubuntukylin/dists/pre

    由于用ubuntu的时候装了几个ubuntukylin的软件(像搜狗拼音for linux),于是最近总是蹦出一个红色的三角提示,说无法更新,虽说不影响使用但是还是很不爽.解决方法记录如下: 进入系统 ...

  6. 在VS 2015中边调试边分析性能

    (此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 对代码进行性能分析,之前往往是一种独立的Profiling过程,现在在VS 2015中可以结 ...

  7. ortp库入门

    转自:http://blog.csdn.net/suer0101/article/details/7333267 再补充一个代码走读:http://www.xuebuyuan.com/1863409. ...

  8. 初识RPC协议

    什么是rpc框架 先回答第一个问题:什么是RPC框架? 如果用一句话概括RPC就是:远程调用框架(Remote Procedure Call) 那什么是远程调用? 通常我们调用一个php中的方法,比如 ...

  9. [unity3d插件]2dtoolkit系列一 创建精灵

    从今天开始要做一个2d游戏,由于之前都是做cocos2dx的,然后接触了一段时间的unity3d,都是做3D方面的东西,得知要做2d游戏还是有点开心的,或许因为不想丢失之前的2d游戏的一些思想,然后接 ...

  10. .NET中的六个重要概念:栈、堆、值类型、引用类型、装箱和拆箱

    为何要翻译 一来是为了感受国外优秀技术社区知名博主的高质量文章,二来是为了复习对.NET技术的基础拾遗达到温故知新的效果,最后也是为了锻炼一下自己的英文读写能力.因为是首次翻译英文文章(哎,原谅我这个 ...