题目大概说,给一张图,删除其中一些单向边,使起点s出度比入度多1,终点t入度比出度多1,其他点出度等于入度。其中删除边的费用是bi,保留边的费用是ai,问完成要求最小的费用是多少。

一开始我想到和混合图欧拉回路(POJ1637)的类似构造方法:

  • 假设所有边一开始都是保留的,算出各个点的入度和出度,另外s点的出度-1,t点的入度-1;
  • 然后把出度-入度等于正数的点源点向其连一条容量为出度-入度的边,等于负数的点其向汇点连一条容量为入度-出度的边
  • 这样就是要通过删除边使那些与源汇相连的边满流,这样就满足各个点度的要求;而删除一条边<u,v>会使u的出度-1,v的入度-1,这样在容量网络中由u向v连容量1费用bi-ai的边
  • Σai-MCMF就是答案

不过这样是错的= =而且因为负环死循环TLE了。我试图想拆点消除负环,发现两端点都与源点或汇点相连的边都不起作用,觉得怪怪的好像不大对,提交果然是WA的。

正确的做法是:一开始不是假设所有边都是保留的,而是贪心地先确定最少的费用,即如果ai<bi则保留否则删除!

然后接下去的做法也是类似的,我就不赘述了。。

 #include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 111
#define MAXM 8888
struct Edge{
int u,v,cap,cost,next;
}edge[MAXM];
int vs,vt,NV,NE,head[MAXN];
void addEdge(int u,int v,int cap,int cost){
edge[NE].u=u; edge[NE].v=v; edge[NE].cap=cap; edge[NE].cost=cost;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].u=v; edge[NE].v=u; edge[NE].cap=; edge[NE].cost=-cost;
edge[NE].next=head[v]; head[v]=NE++;
}
int d[MAXN],pre[MAXN];
bool vis[MAXN];
bool SPFA(){
for(int i=; i<NV; ++i){
d[i]=INF; vis[i]=;
}
d[vs]=; vis[vs]=;
queue<int> que;
que.push(vs);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap && d[v]>d[u]+edge[i].cost){
d[v]=d[u]+edge[i].cost;
pre[v]=i;
if(!vis[v]){
vis[v]=;
que.push(v);
}
}
}
vis[u]=;
}
return d[vt]!=INF;
}
int tot;
int MCMF(){
int res=,mxflow=;
while(SPFA()){
int flow=INF,cost=;
for(int u=vt; u!=vs; u=edge[pre[u]].u){
flow=min(flow,edge[pre[u]].cap);
}
mxflow+=flow;
for(int u=vt; u!=vs; u=edge[pre[u]].u){
edge[pre[u]].cap-=flow;
edge[pre[u]^].cap+=flow;
cost+=flow*edge[pre[u]].cost;
}
res+=cost;
}
if(tot!=mxflow) return INF;
return res;
}
int u[],v[],w1[],w2[];
int deg[MAXN];
int main(){
int T,n,m,s,t;
scanf("%d",&T);
for(int cse=; cse<=T; ++cse){
scanf("%d%d%d%d",&n,&m,&s,&t);
int res=;
memset(deg,,sizeof(deg));
--deg[s]; ++deg[t];
for(int i=; i<m; ++i){
scanf("%d%d%d%d",u+i,v+i,w1+i,w2+i);
if(w1[i]<w2[i]){
++deg[u[i]];
--deg[v[i]];
res+=w1[i];
}else{
res+=w2[i];
}
}
tot=;
vs=; vt=n+; NV=vt+; NE=;
memset(head,-,sizeof(head));
for(int i=; i<=n; ++i){
if(deg[i]>) addEdge(vs,i,deg[i],),tot+=deg[i];
else addEdge(i,vt,-deg[i],);
}
for(int i=; i<m; ++i){
if(w1[i]<w2[i]){
addEdge(u[i],v[i],,w2[i]-w1[i]);
}else{
addEdge(v[i],u[i],,w1[i]-w2[i]);
}
}
int tmp=MCMF();
if(tmp==INF) printf("Case %d: impossible\n",cse);
else printf("Case %d: %d\n",cse,res+tmp);
}
return ;
}

HDU4067 Random Maze(最小费用最大流)的更多相关文章

  1. TZOJ 4712 Double Shortest Paths(最小费用最大流)

    描述 Alice and Bob are walking in an ancient maze with a lot of caves and one-way passages connecting ...

  2. [板子]最小费用最大流(Dijkstra增广)

    最小费用最大流板子,没有压行.利用重标号让边权非负,用Dijkstra进行增广,在理论和实际上都比SPFA增广快得多.教程略去.转载请随意. #include <cstdio> #incl ...

  3. bzoj1927最小费用最大流

    其实本来打算做最小费用最大流的题目前先来点模板题的,,,结果看到这道题二话不说(之前打太多了)敲了一个dinic,快写完了发现不对 我当时就这表情→   =_=你TM逗我 刚要删突然感觉dinic的模 ...

  4. ACM/ICPC 之 卡卡的矩阵旅行-最小费用最大流(可做模板)(POJ3422)

    将每个点拆分成原点A与伪点B,A->B有两条单向路(邻接表实现时需要建立一条反向的空边,并保证环路费用和为0),一条残留容量为1,费用为本身的负值(便于计算最短路),另一条残留容量+∞,费用为0 ...

  5. HDU5900 QSC and Master(区间DP + 最小费用最大流)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...

  6. P3381 【模板】最小费用最大流

    P3381 [模板]最小费用最大流 题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行 ...

  7. 【BZOJ-3876】支线剧情 有上下界的网络流(有下界有源有汇最小费用最大流)

    3876: [Ahoi2014]支线剧情 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 821  Solved: 502[Submit][Status ...

  8. hdu 4411 2012杭州赛区网络赛 最小费用最大流 ***

    题意: 有 n+1 个城市编号 0..n,有 m 条无向边,在 0 城市有个警察总部,最多可以派出 k 个逮捕队伍,在1..n 每个城市有一个犯罪团伙,          每个逮捕队伍在每个城市可以选 ...

  9. UVa11082 Matrix Decompressing(最小费用最大流)

    题目大概有一个n*m的矩阵,已知各行所有数的和的前缀和和各列所有数的和的前缀和,且矩阵各个数都在1到20的范围内,求该矩阵的一个可能的情况. POJ2396的弱化版本吧..建图的关键在于: 把行.列看 ...

  10. UVa12092 Paint the Roads(最小费用最大流)

    题目大概说一个n个点m条带权有向边的图,要给边染色,染色的边形成若干个回路且每个点都恰好属于其中k个回路.问最少要染多少边权和的路. 一个回路里面各个点的入度=出度=1,那么可以猜想知道各个点如果都恰 ...

随机推荐

  1. 决绝Capturing 'demo' strongly in this block is likely to lead to a retain cycle

    - (IBAction)onTest:(id)sender { BlockDemo *demo = [[BlockDemo alloc]init];  __weak typeof(BlockDemo) ...

  2. 双栈排序(codevs 1170)

    题目描述 Description Tom最近在研究一个有趣的排序问题.如图所示,通过2个栈S1和S2,Tom希望借助以下4种操作实现将输入序列升序排序. 操作a 如果输入序列不为空,将第一个元素压入栈 ...

  3. Stanford大学机器学习公开课(四):牛顿法、指数分布族、广义线性模型

    (一)牛顿法解最大似然估计 牛顿方法(Newton's Method)与梯度下降(Gradient Descent)方法的功能一样,都是对解空间进行搜索的方法.其基本思想如下: 对于一个函数f(x), ...

  4. Union函数

    . 共用体声明和共用体变量定义 共用体(参考“共用体”百科词条)是一种特殊形式的变量,使用关键字union来定义 共用体(有些人也叫"联合")声明和共用体变量定义与结构体十分相似. ...

  5. python 中内存映射二进制文件

    内存映射一个文件并不会导致整个文件被读取到内存中. 也就是说,文件并没有被复制到内存缓存或数组中.相反,操作系统仅仅为文件内容保留了一段虚拟内存. 当你访问文件的不同区域时,这些区域的内容才根据需要被 ...

  6. drozer unknown module处理办法

    将目录切换到drozer安装目录,然后在执行:

  7. Visual Studio 推荐插件--高量,变量高量,语法高亮

    1  WordLight for 2008 下载网址:http://visualstudiogallery.msdn.microsoft.com/ad686131-47d4-4c13-ada2-5b1 ...

  8. 与你相遇好幸运,Sails.js自定义responses

    在 /api/responses/ 新建文件 >serviceDBError.js 自定义的数据库错误 >serviceError.js  自定义的数据错误 >serviceSucc ...

  9. PHP定时器实现每隔几秒运行一次

    php是服务器端脚本了并不像js那样有专业的settimeout函数来定时执行了,但只要浏览器不关闭各阶层是可以做到了,下面一起来看看. 下面写个简单例子来讲解这个方法. <?php ignor ...

  10. App 开发:Hybrid 架构下的 HTML5 应用加速方案

    在移动 App 开发领域,主流的开发模式可分为 Native.Hybrid.WebApp 三种方式.然而 2013 年,纯 WebApp 开发模式的发展受到一定挫折,以 Facebook 为代表的独立 ...