三部曲二(基本算法、动态规划、搜索)-1004-Instant Complexity
Instant Complexity
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 20000/10000K (Java/Other)
Total Submission(s) : 8 Accepted Submission(s) : 7
Generally, one determines the run-time of an algorithm in relation to the `size' n of the input, which could be the number of objects to be sorted, the number of points in a given polygon, and so on. Since determining a formula dependent on n for the run-time of an algorithm is no easy task, it would be great if this could be automated. Unfortunately, this is not possible in general, but in this problem we will consider programs of a very simple nature, for which it is possible. Our programs are built according to the following rules (given in BNF), where < number > can be any non-negative integer:
< Program > ::= "BEGIN" < Statementlist > "END"
< Statementlist > ::= < Statement > | < Statement > < Statementlist >
< Statement > ::= < LOOP-Statement > | < OP-Statement >
< LOOP-Statement > ::= < LOOP-Header > < Statementlist > "END"
< LOOP-Header > ::= "LOOP" < number > | "LOOP n"
< OP-Statement > ::= "OP" < number >
The run-time of such a program can be computed as follows: the execution of an OP-statement costs as many time-units as its parameter specifies. The statement list enclosed by a LOOP-statement is executed as many times as the parameter of the statement indicates, i.e., the given constant number of times, if a number is given, and n times, if n is given. The run-time of a statement list is the sum of the times of its constituent parts. The total run-time therefore generally depends on n.
Output a blank line after each test case.
LOOP n
OP 4
LOOP 3
LOOP n
OP 1
END
OP 2
END
OP 1
END
OP 17
END
OP 1997 LOOP n LOOP n OP 1 END END
END
Runtime = 3*n^2+11*n+17
Program #2
Runtime = n^2+1997
#include <iostream>
#include <cstring>
#include <stdio.h>
#include <string>
#include <algorithm>
using namespace std; char cmd[][];
int mul[]; struct factor
{
int coef,time;
}fac[]; bool cmp(const factor f1,const factor f2)
{
return f1.time>f2.time||f1.time==f2.time&&f1.coef>f2.time;
} int main()
{
// freopen("in.txt","r",stdin);
int T,cas=;
scanf("%d",&T);
while(T--)
{
cas++;
int hn=,tn=,tot=,i,j,k,rear1=,rear2=;
memset(fac,,sizeof(fac));
memset(mul,,sizeof(mul));
while(hn!=tn) //当左右括号数相等时输入结束
{
scanf("%s",cmd[tot]);
if(strcmp(cmd[tot],"LOOP")==)
hn++;
else if(strcmp(cmd[tot],"END")==)
tn++;
tot++;
}
// for(i=0;i<tot;i++)
// cout<<cmd[i]<<endl;
for(i=;i<tot;i++)
{
if(cmd[i][]=='O')
{
if(cmd[i+][]=='n')
{
fac[rear1].coef=;
fac[rear1].time=;
rear1++;
}
else
{
int tmp=;
for(j=;j<strlen(cmd[i+]);j++)
tmp=tmp*+(cmd[i+][j]-'');
fac[rear1++].coef=tmp;
// cout<<tmp<<endl;
}
}
else if(cmd[i][]=='L')
{
fac[rear1++].coef=-; //作为分界线,表明括号的开始
if(cmd[i+][]=='n')
mul[rear2++]=-; //以-1代表乘数是n
else
{
int tmp=;
for(j=;j<strlen(cmd[i+]);j++)
tmp=tmp*+(cmd[i+][j]-'');
mul[rear2++]=tmp;
// cout<<tmp<<endl;
}
}
else if(cmd[i][]=='E')
{
int t=rear1-;
rear2--;
while(fac[t].coef!=-&&t!=-)
{
t--;
}
for(j=t+;j<rear1-;j++)
{
if(fac[j].coef==)
continue;
for(k=j+;k<rear1;k++)
{
if(fac[k].coef==)
continue;
if(fac[j].time==fac[k].time) //合并同类项
{
fac[j].coef+=fac[k].coef;
fac[k].coef=;
fac[k].time=;
}
}
}
if(rear2==-) //表明运行到最后一个end了,跳出
break;
fac[t].coef=; //消除分界线
int m=mul[rear2];
if(m==-)
{
for(j=t+;j<rear1;j++)
{
if(fac[j].coef)
fac[j].time++;
}
}
else
{
for(j=t+;j<rear1;j++)
{
if(fac[j].coef)
fac[j].coef*=m;
}
}
}
}
sort(fac,fac+rear1,cmp);
// for(i=0;i<rear1;i++)
// cout<<fac[i].coef<<' '<<fac[i].time<<endl;
printf("Program #%d\n",cas);
printf("Runtime = ");
if(fac[].coef==)
{
printf("0\n\n");
continue;
}
for(i=;i<rear1;i++)
{
if(fac[i].time==&&fac[i].coef==)
break;
if(fac[i].coef==&&fac[i].time==)
printf("%d",fac[i].coef);
if(fac[i].coef>)
{
printf("%d",fac[i].coef);
if(fac[i].time>)
printf("*");
}
if(fac[i].coef>&&fac[i].time>)
{
printf("n");
if(fac[i].time>)
printf("^%d",fac[i].time);
}
if(fac[i+].coef!=)
printf("+");
}
printf("\n\n");
}
return ;
}
三部曲二(基本算法、动态规划、搜索)-1004-Instant Complexity的更多相关文章
- LeetCode初级算法--动态规划01:爬楼梯
LeetCode初级算法--动态规划01:爬楼梯 搜索微信公众号:'AI-ming3526'或者'计算机视觉这件小事' 获取更多算法.机器学习干货 csdn:https://blog.csdn.net ...
- 算法-动态规划 Dynamic Programming--从菜鸟到老鸟
算法-动态规划 Dynamic Programming--从菜鸟到老鸟 版权声明:本文为博主原创文章,转载请标明出处. https://blog.csdn.net/u013309870/ar ...
- LeetCode探索初级算法 - 动态规划
LeetCode探索初级算法 - 动态规划 今天在LeetCode上做了几个简单的动态规划的题目,也算是对动态规划有个基本的了解了.现在对动态规划这个算法做一个简单的总结. 什么是动态规划 动态规划英 ...
- ASP.NET Core中使用IOC三部曲(二.采用Autofac来替换IOC容器,并实现属性注入)
前言 本文主要是详解一下在ASP.NET Core中,自带的IOC容器相关的使用方式和注入类型的生命周期. 这里就不详细的赘述IOC是什么 以及DI是什么了.. emm..不懂的可以自行百度. 目录 ...
- 算法-动态规划DP小记
算法-动态规划DP小记 动态规划算法是一种比较灵活的算法,针对具体的问题要具体分析,其宗旨就是要找出要解决问题的状态,然后逆向转化为求解子问题,最终回到已知的初始态,然后再顺序累计各个子问题的解从而得 ...
- python基础(9)--递归、二叉算法、多维数组、正则表达式
1.递归 在函数内部,可以调其他函数,如果一个函数在内部调用它本身,这个函数就是递归函数.递归算法对解决一大类问题是十分有效的,它往往使算法的描述简洁而且易于裂解 递归算法解决问题的特点: 1)递归是 ...
- hihocoder#1098 : 最小生成树二·Kruscal算法
#1098 : 最小生成树二·Kruscal算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 随着小Hi拥有城市数目的增加,在之间所使用的Prim算法已经无法继续使用 ...
- Hihocoder #1098 : 最小生成树二·Kruskal算法 ( *【模板】 )
#1098 : 最小生成树二·Kruscal算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 随着小Hi拥有城市数目的增加,在之间所使用的Prim算法已经无法继续使用 ...
- 垃圾回收GC:.Net自己主动内存管理 上(二)内存算法
垃圾回收GC:.Net自己主动内存管理 上(二)内存算法 垃圾回收GC:.Net自己主动内存管理 上(一)内存分配 垃圾回收GC:.Net自己主动内存管理 上(二)内存算法 垃圾回收GC:.Net自己 ...
随机推荐
- asp.net 之
<script type="text/javascript"> //获取客户端实例 var pa = Sys.WebForms.PageRequestManager.g ...
- HDU 4947 GCD Array 容斥原理+树状数组
GCD Array Time Limit: 11000/5500 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total ...
- Adding List Item Element At Runtime In Oracle Forms
Add combo list / drop down list item element at runtime in Oracle forms.SyntaxPROCEDURE ADD_LIST_ELE ...
- python pip install
wget --no-check-certificate https://github.com/pypa/pip/archive/1.5.5.tar.gz https://github.com/pypa ...
- php : 匿名函数(闭包) [一]
摘自: http://www.cnblogs.com/starlion/p/3894578.html 一:匿名函数 (在php5.3.0 或以上才能使用) php中的匿名函数(Anonymous fu ...
- 《利用python进行数据分析》读书笔记--第十一章 金融和经济数据应用(一)
自2005年开始,python在金融行业中的应用越来越多,这主要得益于越来越成熟的函数库(NumPy和pandas)以及大量经验丰富的程序员.许多机构发现python不仅非常适合成为交互式的分析环境, ...
- js之oop <四>对象管理
对象扩展管理 Object.isExtensible() 检测对象是否可扩展(一般返回true).Object.preventExtensions() 防止对象扩展. var p = {p1:&quo ...
- $.ajax()常用方法详解(推荐)
AJAX 是一种与服务器交换数据的技术,可以在补充在整个页面的情况下更新网页的一部分.接下来通过本文给大家介绍ajax一些常用方法,大家有需要可以一起学习. 1.url: 要求为String类型的参数 ...
- iOS下载使用系统字体
iOS下载使用系统字体 通用开发中一般使用系统默认的字体: 另外系统也提供了一些其他字体我们可以选择下载使用 1:在mac上打开 字体册 app 即可查找系统支持的字体,适用于ios上开发使用 从ma ...
- python3 字符串相关函数
python版本 3.5 #Author by Liguangbo#_*_ coding:utf-8 _*_str="i like study python, welcome to my p ...