Why one-norm is an agreeable alternative for zero-norm?
【转载请注明出处】http://www.cnblogs.com/mashiqi
Today I try to give a brief inspection on why we always choose one-norm as the approximation of zero-norm, which is a sparsity indicator. This blog is not rigorous in theory, but I just want give a intuitive explanation. It may be extended to be more comprehensive in the future.
I begin to know something about zero-norm totally from the emergence of the so-called Compressive Sensing theory. While CS brings us a bunch of encouraging tools to handle some problems, such as image denoising, we also know that it is hard to operate directly on the zero-norm (in fact it is NP-hard). Therefore many scholars regard one-norm as an agreeable alternative for zero-norm! But why one-norm, why isn't two-norm or other?
There is a picture (with some small modefication for my own usage) from [Davenport et al. 2011] that gives a illustrative explanation of what I want to express.

We see that the intersection $\hat{x}$ when $p=1/2$ is equivalent to $\hat{x}$ when $p=1$--both are the intersection of solid line and y-axis. But the corresponding intersection of $p=2$ and $p=\infty$ is not so--they are in somewhere out of any axis. Further, for the first two intersections each is only have one coordinate that is non-zero, and $0 \leq p \leq 1$. Then I give my intuitive explanation of the main question of this blog: the shape of the contour of some critical points, such as intersections of unit circle and axes, of the $l_p$ space attributes a lot to the sparsity of the solution of an algorithm performed in this $l_p$ space, and these intersections is like a sharp vertex when $0 \leq p \leq 1$, while they are dull when $p > 1$. I'll show this a simple mathematical example.
Let's consider the $l_p$ unit cirle in two-dimensional space: $$\|(x,y)\|_p = (x^p + y^p)^{1/p} = x^p + y^p = 1,~(p \geq 0)$$ For simplicity, I only plot the unit cirle in the first quadrant ($y = (1 - x^p)^{1/p},~(x \geq 0, y \geq 0)$):





It is very necessary to investigate the detail around $x=0$, and the tangential of the unit circle in that point is the key point to understand my intuitive explanation. Now let's see the detail and the tangential in $x=0$ to see what happened there.





In these figure, blue lines are unit circle and red lines is the tangential line of the point $(0,1)$. We see that the tangential line is vertial when $p = 0.2$ and $p = 0.8$, and is horizontal when $p = 1.2$ and $p = 1.8$. $p = 1$ is the cut-off point. In fact we can do some simple mathematics to prove that the tangential is vertial when $0 \leq p < 1$ and horizontal when $p > 1$, and only when $p = 1$ the tangential is on an angle of 45 degree. Therefore when $0 \leq p < 1$, there is a sharp vertex in $(1,0)$.
Reference:
Davenport, Mark A., et al. "Introduction to compressed sensing." Preprint 93 (2011).
Why one-norm is an agreeable alternative for zero-norm?的更多相关文章
- norm函数的作用,matlab
格式:n=norm(A,p)功能:norm函数可计算几种不同类型的返回A中最大一列和,即max(sum(abs(A))) 2 返回A的最大奇异值,和n=norm(A)用法一样 inf 返回A中最大一行 ...
- MATLAB 中NORM运用
格式:n=norm(A,p)功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释 NORM Matrix or vector ...
- (转)几种范数的解释 l0-Norm, l1-Norm, l2-Norm, … , l-infinity Norm
几种范数的解释 l0-Norm, l1-Norm, l2-Norm, - , l-infinity Norm from Rorasa's blog l0-Norm, l1-Norm, l2-Norm, ...
- matlab norm的使用
格式:n=norm(A,p)功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释 NORM Matrix or vector n ...
- matlab norm 范式
格式:n=norm(A,p) 功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 p 返回值 1 返回A中最大一列和,即max(sum(abs(A))) 2 返回A的 ...
- Matlab norm 用法小记
Matlab norm 用法小记 matlab norm (a) 用法以及实例 norm(A,p)当A是向量时norm(A,p) Returns sum(abs(A).^p)^(1/p), for ...
- matlab中norm与svd函数用法
格式:n=norm(A,p) 功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释: NORM Matrix or vector ...
- matlab中norm函数的用法
格式:n=norm(A,p) 功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释 NORM Matrix or vecto ...
- python 库 Numpy 中如何求取向量范数 np.linalg.norm(求范数)(向量的第二范数为传统意义上的向量长度),(如何求取向量的单位向量)
求取向量二范数,并求取单位向量(行向量计算) import numpy as np x=np.array([[0, 3, 4], [2, 6, 4]]) y=np.linalg.norm(x, axi ...
随机推荐
- GaugeControl 数字时钟,温度计,仪表盘
https://documentation.devexpress.com/#WindowsForms/CustomDocument18217 This topic will guide you thr ...
- Shell脚本查看apk签名信息
用shell写了一个查看apk签名的脚本.代码很少也很简单 支持递归目录查询 #!/bin/bash #使用方法 ./getcertificate.sh xx.apk get_signature() ...
- iOS - Mac Apache WebDav 服务器配置
前言 Apache 服务器: Web 服务器,可以支持各种脚本(PHP)的执行,目前世界上使用最为广泛的一种 Web 服务器 WebDav 服务器: 基于 http 协议的 "文件" ...
- 今天的感悟,对于python中的list()与w3c教程
首先本来想百度一下python定义列表的时候用 list()与直接用[]有什么区别,其中没有找到相关直接资料,看到了W3c菜鸟教程中之前看到的tuple,不禁想起list(tuple)是用来将元组转换 ...
- html之meta详解
<!DOCTYPE html> <!-- 使用 HTML5 doctype,不区分大小写 --> <html lang="zh-cmn-Hans"&g ...
- StringBuffer delete
描述 java.lang.StringBuffer.delete() 方法将删除这个序列的一个子字符串中的字符. 子字符串的开始在指定的start和延伸处的字符索引end - 1或结束的序列,如果不存 ...
- 002_kafka_相关术语详细解析
参考: http://www.cnblogs.com/likehua/p/3999538.html http://kafka.apache.org/documentation.html#getting ...
- 学习笔记 DataGridView数据导出为Excel
DataGridView数据导出为Excel 怎样把WinForm下的“DGV”里的绑定数据库后的数据导出到Excel中. 比如:在窗体里有个一“DGV”,DataGridView1,绑定了数据源 ...
- easyui表单多重验证,动态设置easyui控件
要实现的功能:在做添加学生信息的时候,利用easyui的验证功能判断 学号是否重复和学号只能为数字 最终效果如下图: 但在做这个的过程中,遇到了一系列的问题: 扩展validatebox的验证方法,最 ...
- NetworkComms V3 之发送UDP广播消息
NetworkComms网络通信框架序言 NetworkComms通信框架,是一款来自英国的c#语言编写的通信框架,历时6年研发,成熟稳定,性能可靠. NetworkComms v3目前只支持基本的U ...