【转载请注明出处】http://www.cnblogs.com/mashiqi

Today I try to give a brief inspection on why we always choose one-norm as the approximation of zero-norm, which is a sparsity indicator. This blog is not rigorous in theory, but I just want give a intuitive explanation. It may be extended to be more comprehensive in the future.

I begin to know something about zero-norm totally from the emergence of the so-called Compressive Sensing theory. While CS brings us a bunch of encouraging tools to handle some problems, such as image denoising, we also know that it is hard to operate directly on the zero-norm (in fact it is NP-hard). Therefore many scholars regard one-norm as an agreeable alternative for zero-norm! But why one-norm, why isn't two-norm or other?

There is a picture (with some small modefication for my own usage) from [Davenport et al. 2011] that gives a illustrative explanation of what I want to express.

We see that the intersection $\hat{x}$ when $p=1/2$ is equivalent to $\hat{x}$ when $p=1$--both are the intersection of solid line and y-axis. But the corresponding intersection of $p=2$ and $p=\infty$ is not so--they are in somewhere out of any axis. Further, for the first two intersections each is only have one coordinate that is non-zero, and $0 \leq p \leq 1$. Then I give my intuitive explanation of the main question of this blog: the shape of the contour of some critical points, such as intersections of unit circle and axes, of the $l_p$ space attributes a lot to the sparsity of the solution of an algorithm performed in this $l_p$ space, and these intersections is like a sharp vertex when $0 \leq p \leq 1$, while they are dull when $p > 1$. I'll show this a simple mathematical example.

Let's consider the $l_p$ unit cirle in two-dimensional space: $$\|(x,y)\|_p = (x^p + y^p)^{1/p} = x^p + y^p = 1,~(p \geq 0)$$ For simplicity, I only plot the unit cirle in the first quadrant ($y = (1 - x^p)^{1/p},~(x \geq 0, y \geq 0)$):

It is very necessary to investigate the detail around $x=0$, and the tangential of the unit circle in that point is the key point to understand my intuitive explanation. Now let's see the detail and the tangential in $x=0$ to see what happened there.

In these figure, blue lines are unit circle and red lines is the tangential line of the point $(0,1)$. We see that the tangential line is vertial when $p = 0.2$ and $p = 0.8$, and is horizontal when $p = 1.2$ and $p = 1.8$. $p = 1$ is the cut-off point. In fact we can do some simple mathematics to prove that the tangential is vertial when $0 \leq p < 1$ and horizontal when $p > 1$, and only when $p = 1$ the tangential is on an angle of 45 degree. Therefore when $0 \leq p < 1$, there is a sharp vertex in $(1,0)$.

Reference:

Davenport, Mark A., et al. "Introduction to compressed sensing." Preprint 93 (2011).

Why one-norm is an agreeable alternative for zero-norm?的更多相关文章

  1. norm函数的作用,matlab

    格式:n=norm(A,p)功能:norm函数可计算几种不同类型的返回A中最大一列和,即max(sum(abs(A))) 2 返回A的最大奇异值,和n=norm(A)用法一样 inf 返回A中最大一行 ...

  2. MATLAB 中NORM运用

    格式:n=norm(A,p)功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释 NORM   Matrix or vector ...

  3. (转)几种范数的解释 l0-Norm, l1-Norm, l2-Norm, … , l-infinity Norm

    几种范数的解释 l0-Norm, l1-Norm, l2-Norm, - , l-infinity Norm from Rorasa's blog l0-Norm, l1-Norm, l2-Norm, ...

  4. matlab norm的使用

    格式:n=norm(A,p)功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释 NORM Matrix or vector n ...

  5. matlab norm 范式

    格式:n=norm(A,p) 功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 p  返回值  1  返回A中最大一列和,即max(sum(abs(A)))  2 返回A的 ...

  6. Matlab norm 用法小记

    Matlab norm 用法小记 matlab norm (a) 用法以及实例 norm(A,p)当A是向量时norm(A,p)   Returns sum(abs(A).^p)^(1/p), for ...

  7. matlab中norm与svd函数用法

    格式:n=norm(A,p) 功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释: NORM Matrix or vector ...

  8. matlab中norm函数的用法

    格式:n=norm(A,p) 功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释 NORM   Matrix or vecto ...

  9. python 库 Numpy 中如何求取向量范数 np.linalg.norm(求范数)(向量的第二范数为传统意义上的向量长度),(如何求取向量的单位向量)

    求取向量二范数,并求取单位向量(行向量计算) import numpy as np x=np.array([[0, 3, 4], [2, 6, 4]]) y=np.linalg.norm(x, axi ...

随机推荐

  1. wcf 配置

    wcf 开发 [ServiceContract]-----接口定义1 public interface ILog { [OperationContract]------接口定义1 List<Lo ...

  2. mysql中查询语句中的一个知识点说明

    1, 简单说明. select * from tb_name where 1[不为零即可];则会显示所有记录,select * from tb_name where 0;则不显示任何记录 假设数据库中 ...

  3. centos 服务开机启动设置

    建立服务文件以nginx 为例 vim /lib/systemd/system/nginx.service 在nginx.service 中插入一下内容 [Unit] Description=ngin ...

  4. Navicat for mysql 破解

    想用navicat for mysql 连接mysql,发现只能试用30天,感觉挺不爽的,购买的话发现价格一千多,好贵的软件. 所以想要破解一下,网上试了一些方法不行,最后找到了一种方法可以的 破解工 ...

  5. java高薪之路__005_IO流

    参考地址: 1. http://blog.csdn.net/yczz/article/details/38761237 File类 ObjectInputStream && Objec ...

  6. 进程、线程、socket套接字-资源大小 & 切换代价

    另,进程 & 线程的很多知识可以看这里:http://www.cnblogs.com/charlesblc/p/6135666.html 今天查了一下进程和线程的资源占用. 比如问:栈和堆的大 ...

  7. LinkedList源码分析

    LinkedList也和ArrayList一样实现了List接口,但是它执行插入和删除操作时比ArrayList更加高效,因为它是基于链表的.基于链表也决定了它在随机访问方面要比ArrayList逊色 ...

  8. Android 四大组件之二(Service)

    service可以在和多场合的应用中使用,比如播放多媒体的时候用户启动了其他Activity这个时候程序要在后台继续播放,比如检测SD卡上文件的变化,再或者在后台记录你地理信息位置的改变等等,总之服务 ...

  9. Asp.net图片文件上传

    对课本上的代码进行了一点的优化 1.获取文件的名称和文件的后缀名 引用了System.IO, 用Path.GetFileNamehe()取得文件名和Path.GetExtension获取文件的后缀 2 ...

  10. 樱花漫地集于我心,蝶舞纷飞祈愿相随 训练:a preparation 训练:a preparation

    知识点:                                                                                               分 ...