Why one-norm is an agreeable alternative for zero-norm?
【转载请注明出处】http://www.cnblogs.com/mashiqi
Today I try to give a brief inspection on why we always choose one-norm as the approximation of zero-norm, which is a sparsity indicator. This blog is not rigorous in theory, but I just want give a intuitive explanation. It may be extended to be more comprehensive in the future.
I begin to know something about zero-norm totally from the emergence of the so-called Compressive Sensing theory. While CS brings us a bunch of encouraging tools to handle some problems, such as image denoising, we also know that it is hard to operate directly on the zero-norm (in fact it is NP-hard). Therefore many scholars regard one-norm as an agreeable alternative for zero-norm! But why one-norm, why isn't two-norm or other?
There is a picture (with some small modefication for my own usage) from [Davenport et al. 2011] that gives a illustrative explanation of what I want to express.

We see that the intersection $\hat{x}$ when $p=1/2$ is equivalent to $\hat{x}$ when $p=1$--both are the intersection of solid line and y-axis. But the corresponding intersection of $p=2$ and $p=\infty$ is not so--they are in somewhere out of any axis. Further, for the first two intersections each is only have one coordinate that is non-zero, and $0 \leq p \leq 1$. Then I give my intuitive explanation of the main question of this blog: the shape of the contour of some critical points, such as intersections of unit circle and axes, of the $l_p$ space attributes a lot to the sparsity of the solution of an algorithm performed in this $l_p$ space, and these intersections is like a sharp vertex when $0 \leq p \leq 1$, while they are dull when $p > 1$. I'll show this a simple mathematical example.
Let's consider the $l_p$ unit cirle in two-dimensional space: $$\|(x,y)\|_p = (x^p + y^p)^{1/p} = x^p + y^p = 1,~(p \geq 0)$$ For simplicity, I only plot the unit cirle in the first quadrant ($y = (1 - x^p)^{1/p},~(x \geq 0, y \geq 0)$):





It is very necessary to investigate the detail around $x=0$, and the tangential of the unit circle in that point is the key point to understand my intuitive explanation. Now let's see the detail and the tangential in $x=0$ to see what happened there.





In these figure, blue lines are unit circle and red lines is the tangential line of the point $(0,1)$. We see that the tangential line is vertial when $p = 0.2$ and $p = 0.8$, and is horizontal when $p = 1.2$ and $p = 1.8$. $p = 1$ is the cut-off point. In fact we can do some simple mathematics to prove that the tangential is vertial when $0 \leq p < 1$ and horizontal when $p > 1$, and only when $p = 1$ the tangential is on an angle of 45 degree. Therefore when $0 \leq p < 1$, there is a sharp vertex in $(1,0)$.
Reference:
Davenport, Mark A., et al. "Introduction to compressed sensing." Preprint 93 (2011).
Why one-norm is an agreeable alternative for zero-norm?的更多相关文章
- norm函数的作用,matlab
格式:n=norm(A,p)功能:norm函数可计算几种不同类型的返回A中最大一列和,即max(sum(abs(A))) 2 返回A的最大奇异值,和n=norm(A)用法一样 inf 返回A中最大一行 ...
- MATLAB 中NORM运用
格式:n=norm(A,p)功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释 NORM Matrix or vector ...
- (转)几种范数的解释 l0-Norm, l1-Norm, l2-Norm, … , l-infinity Norm
几种范数的解释 l0-Norm, l1-Norm, l2-Norm, - , l-infinity Norm from Rorasa's blog l0-Norm, l1-Norm, l2-Norm, ...
- matlab norm的使用
格式:n=norm(A,p)功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释 NORM Matrix or vector n ...
- matlab norm 范式
格式:n=norm(A,p) 功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 p 返回值 1 返回A中最大一列和,即max(sum(abs(A))) 2 返回A的 ...
- Matlab norm 用法小记
Matlab norm 用法小记 matlab norm (a) 用法以及实例 norm(A,p)当A是向量时norm(A,p) Returns sum(abs(A).^p)^(1/p), for ...
- matlab中norm与svd函数用法
格式:n=norm(A,p) 功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释: NORM Matrix or vector ...
- matlab中norm函数的用法
格式:n=norm(A,p) 功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释 NORM Matrix or vecto ...
- python 库 Numpy 中如何求取向量范数 np.linalg.norm(求范数)(向量的第二范数为传统意义上的向量长度),(如何求取向量的单位向量)
求取向量二范数,并求取单位向量(行向量计算) import numpy as np x=np.array([[0, 3, 4], [2, 6, 4]]) y=np.linalg.norm(x, axi ...
随机推荐
- WSDL2ObjC Unsupported Media Type
调用WCF服务时,出这样的异常“415 Unsupported Media Type”, Because the WCF soap is v1.1, the http header should be ...
- sourceforge免费空间申请及使用笔记
sourceforge免费空间申请及使用笔记 sourceforge免费空间安装WordPress博客程序 WordPress博客程序安装文件的上传需要使用工具WinSCP. 你需要在FTP地址填写的 ...
- 关于xcode不同版本打开相同工程问题
今天刚下好了xcode7正式版,于是乎用其创建一个工程.随后关闭此工程用xcode6.3打开此工程.发现报错不能运行,随后网上查资料,可惜中文版的资料几乎可以说是没有,因此写下此文,以方便其他遇到此情 ...
- http://www.oreilly.com/catalog/errataunconfirmed.csp?isbn=9780596529321
集体智慧勘误表: http://www.oreilly.com/catalog/errataunconfirmed.csp?isbn=9780596529321 ------------------- ...
- 【转】Vim十大必备插件
[转]Vim十大必备插件 转自:http://my.oschina.net/zhoukuo/blog/336315 Taglist taglist是一个用于显示定位程序中各种符号的插件,例如宏定义.变 ...
- 各种效果的tab选项卡
;(function($){ $.fn.tabso=function( options ){ var opts=$.extend({},$.fn.tabso.defaults,options ); r ...
- Creating Materials at runtime And Issue of Shader.Find()
Creating Materials at runtimehttp://forum.unity3d.com/threads/create-materials-at-runtime.72952/ //通 ...
- vs---错误收集并自己解决后归纳
1.C++编译时,出现这样的错误 d:\program files\microsoft visual studio\vc98\include\stdio.h(36) : error C2143: sy ...
- oracle中schema指的是什么?
看来有的人还是对schema的真正含义不太理解,现在我再次整理了一下,希望对大家有所帮助. 我们先来看一下他们的定义:A schema is a collection of database obje ...
- shell变量赋值 不能有空格的原因
典型例子: a=date echo $a 成立 a =date echo $a 不成立 其实原因很简单 shell在解释命令时的原则是第一个符号标记只能是程序或者命令,有空格的时候第 ...