Why one-norm is an agreeable alternative for zero-norm?
【转载请注明出处】http://www.cnblogs.com/mashiqi
Today I try to give a brief inspection on why we always choose one-norm as the approximation of zero-norm, which is a sparsity indicator. This blog is not rigorous in theory, but I just want give a intuitive explanation. It may be extended to be more comprehensive in the future.
I begin to know something about zero-norm totally from the emergence of the so-called Compressive Sensing theory. While CS brings us a bunch of encouraging tools to handle some problems, such as image denoising, we also know that it is hard to operate directly on the zero-norm (in fact it is NP-hard). Therefore many scholars regard one-norm as an agreeable alternative for zero-norm! But why one-norm, why isn't two-norm or other?
There is a picture (with some small modefication for my own usage) from [Davenport et al. 2011] that gives a illustrative explanation of what I want to express.

We see that the intersection $\hat{x}$ when $p=1/2$ is equivalent to $\hat{x}$ when $p=1$--both are the intersection of solid line and y-axis. But the corresponding intersection of $p=2$ and $p=\infty$ is not so--they are in somewhere out of any axis. Further, for the first two intersections each is only have one coordinate that is non-zero, and $0 \leq p \leq 1$. Then I give my intuitive explanation of the main question of this blog: the shape of the contour of some critical points, such as intersections of unit circle and axes, of the $l_p$ space attributes a lot to the sparsity of the solution of an algorithm performed in this $l_p$ space, and these intersections is like a sharp vertex when $0 \leq p \leq 1$, while they are dull when $p > 1$. I'll show this a simple mathematical example.
Let's consider the $l_p$ unit cirle in two-dimensional space: $$\|(x,y)\|_p = (x^p + y^p)^{1/p} = x^p + y^p = 1,~(p \geq 0)$$ For simplicity, I only plot the unit cirle in the first quadrant ($y = (1 - x^p)^{1/p},~(x \geq 0, y \geq 0)$):





It is very necessary to investigate the detail around $x=0$, and the tangential of the unit circle in that point is the key point to understand my intuitive explanation. Now let's see the detail and the tangential in $x=0$ to see what happened there.





In these figure, blue lines are unit circle and red lines is the tangential line of the point $(0,1)$. We see that the tangential line is vertial when $p = 0.2$ and $p = 0.8$, and is horizontal when $p = 1.2$ and $p = 1.8$. $p = 1$ is the cut-off point. In fact we can do some simple mathematics to prove that the tangential is vertial when $0 \leq p < 1$ and horizontal when $p > 1$, and only when $p = 1$ the tangential is on an angle of 45 degree. Therefore when $0 \leq p < 1$, there is a sharp vertex in $(1,0)$.
Reference:
Davenport, Mark A., et al. "Introduction to compressed sensing." Preprint 93 (2011).
Why one-norm is an agreeable alternative for zero-norm?的更多相关文章
- norm函数的作用,matlab
格式:n=norm(A,p)功能:norm函数可计算几种不同类型的返回A中最大一列和,即max(sum(abs(A))) 2 返回A的最大奇异值,和n=norm(A)用法一样 inf 返回A中最大一行 ...
- MATLAB 中NORM运用
格式:n=norm(A,p)功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释 NORM Matrix or vector ...
- (转)几种范数的解释 l0-Norm, l1-Norm, l2-Norm, … , l-infinity Norm
几种范数的解释 l0-Norm, l1-Norm, l2-Norm, - , l-infinity Norm from Rorasa's blog l0-Norm, l1-Norm, l2-Norm, ...
- matlab norm的使用
格式:n=norm(A,p)功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释 NORM Matrix or vector n ...
- matlab norm 范式
格式:n=norm(A,p) 功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 p 返回值 1 返回A中最大一列和,即max(sum(abs(A))) 2 返回A的 ...
- Matlab norm 用法小记
Matlab norm 用法小记 matlab norm (a) 用法以及实例 norm(A,p)当A是向量时norm(A,p) Returns sum(abs(A).^p)^(1/p), for ...
- matlab中norm与svd函数用法
格式:n=norm(A,p) 功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释: NORM Matrix or vector ...
- matlab中norm函数的用法
格式:n=norm(A,p) 功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释 NORM Matrix or vecto ...
- python 库 Numpy 中如何求取向量范数 np.linalg.norm(求范数)(向量的第二范数为传统意义上的向量长度),(如何求取向量的单位向量)
求取向量二范数,并求取单位向量(行向量计算) import numpy as np x=np.array([[0, 3, 4], [2, 6, 4]]) y=np.linalg.norm(x, axi ...
随机推荐
- What are the advantages of ReLU over sigmoid function in deep neural network?
The state of the art of non-linearity is to use ReLU instead of sigmoid function in deep neural netw ...
- java使用split切割字符串的时候,注意转义字符
今天在做项目的时候发现一个奇怪的问题 File file = new File("d:\\a.txt"); BufferedReader br = new BufferedRead ...
- 横向滑动的HorizontalListView滑动指定位置的解决方法
项目中用到了自定义横向滑动的控件:HorizontalListView,点击其中一项,跳转到另外一个大图界面,大图界面也是HorizontalListView,想使用setSelection方法设定 ...
- jQuery轮播
一,简单实现轮播 //轮播容器 .carousel //轮播容器--可设宽度 (carousel="轮播") //轮播指标 .carousel-indicators ...
- 两种JS方法实现斐波那契数列
第一种方法:递归 function fibonacci(n){ if (n==0){ return 0; }else if (n==1){ return 1; } return fibonacci(n ...
- 张艾迪(创始人):Hello.世界...
The World No.1 Girl :Eidyzhang The World No.1 Internet Girl :Eidyzhang AOOOiA.global Founder :Eidyzh ...
- Google 黑客搜索技巧
常用的google关键字: foo1 foo2 (也就是关联,比如搜索xx公司 xx美女) operatorfoo filetype123 类型 sitefoo.com 相对直接看网站更有意思,可以得 ...
- Centos7 下配置mysql5.6主从复制实例(一主两从)
标签:mysql 数据库 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://8941355.blog.51cto.com/89313 ...
- apache log4j日志工具使用入门[maven 项目配置]
简单的介绍下Maven项目中有关org.apache.log4j.Logger的使用.[1]首先我们需要找到 org.apache.log4j.Logger的坐标,并配置到POM.xml <de ...
- 关于ImageLoader的详细介绍
转载请注明本文出自xiaanming的博客(http://blog.csdn.net/xiaanming/article/details/26810303),请尊重他人的辛勤劳动成果,谢谢! 相信大家 ...