【转载请注明出处】http://www.cnblogs.com/mashiqi

Today I try to give a brief inspection on why we always choose one-norm as the approximation of zero-norm, which is a sparsity indicator. This blog is not rigorous in theory, but I just want give a intuitive explanation. It may be extended to be more comprehensive in the future.

I begin to know something about zero-norm totally from the emergence of the so-called Compressive Sensing theory. While CS brings us a bunch of encouraging tools to handle some problems, such as image denoising, we also know that it is hard to operate directly on the zero-norm (in fact it is NP-hard). Therefore many scholars regard one-norm as an agreeable alternative for zero-norm! But why one-norm, why isn't two-norm or other?

There is a picture (with some small modefication for my own usage) from [Davenport et al. 2011] that gives a illustrative explanation of what I want to express.

We see that the intersection $\hat{x}$ when $p=1/2$ is equivalent to $\hat{x}$ when $p=1$--both are the intersection of solid line and y-axis. But the corresponding intersection of $p=2$ and $p=\infty$ is not so--they are in somewhere out of any axis. Further, for the first two intersections each is only have one coordinate that is non-zero, and $0 \leq p \leq 1$. Then I give my intuitive explanation of the main question of this blog: the shape of the contour of some critical points, such as intersections of unit circle and axes, of the $l_p$ space attributes a lot to the sparsity of the solution of an algorithm performed in this $l_p$ space, and these intersections is like a sharp vertex when $0 \leq p \leq 1$, while they are dull when $p > 1$. I'll show this a simple mathematical example.

Let's consider the $l_p$ unit cirle in two-dimensional space: $$\|(x,y)\|_p = (x^p + y^p)^{1/p} = x^p + y^p = 1,~(p \geq 0)$$ For simplicity, I only plot the unit cirle in the first quadrant ($y = (1 - x^p)^{1/p},~(x \geq 0, y \geq 0)$):

It is very necessary to investigate the detail around $x=0$, and the tangential of the unit circle in that point is the key point to understand my intuitive explanation. Now let's see the detail and the tangential in $x=0$ to see what happened there.

In these figure, blue lines are unit circle and red lines is the tangential line of the point $(0,1)$. We see that the tangential line is vertial when $p = 0.2$ and $p = 0.8$, and is horizontal when $p = 1.2$ and $p = 1.8$. $p = 1$ is the cut-off point. In fact we can do some simple mathematics to prove that the tangential is vertial when $0 \leq p < 1$ and horizontal when $p > 1$, and only when $p = 1$ the tangential is on an angle of 45 degree. Therefore when $0 \leq p < 1$, there is a sharp vertex in $(1,0)$.

Reference:

Davenport, Mark A., et al. "Introduction to compressed sensing." Preprint 93 (2011).

Why one-norm is an agreeable alternative for zero-norm?的更多相关文章

  1. norm函数的作用,matlab

    格式:n=norm(A,p)功能:norm函数可计算几种不同类型的返回A中最大一列和,即max(sum(abs(A))) 2 返回A的最大奇异值,和n=norm(A)用法一样 inf 返回A中最大一行 ...

  2. MATLAB 中NORM运用

    格式:n=norm(A,p)功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释 NORM   Matrix or vector ...

  3. (转)几种范数的解释 l0-Norm, l1-Norm, l2-Norm, … , l-infinity Norm

    几种范数的解释 l0-Norm, l1-Norm, l2-Norm, - , l-infinity Norm from Rorasa's blog l0-Norm, l1-Norm, l2-Norm, ...

  4. matlab norm的使用

    格式:n=norm(A,p)功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释 NORM Matrix or vector n ...

  5. matlab norm 范式

    格式:n=norm(A,p) 功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 p  返回值  1  返回A中最大一列和,即max(sum(abs(A)))  2 返回A的 ...

  6. Matlab norm 用法小记

    Matlab norm 用法小记 matlab norm (a) 用法以及实例 norm(A,p)当A是向量时norm(A,p)   Returns sum(abs(A).^p)^(1/p), for ...

  7. matlab中norm与svd函数用法

    格式:n=norm(A,p) 功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释: NORM Matrix or vector ...

  8. matlab中norm函数的用法

    格式:n=norm(A,p) 功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释 NORM   Matrix or vecto ...

  9. python 库 Numpy 中如何求取向量范数 np.linalg.norm(求范数)(向量的第二范数为传统意义上的向量长度),(如何求取向量的单位向量)

    求取向量二范数,并求取单位向量(行向量计算) import numpy as np x=np.array([[0, 3, 4], [2, 6, 4]]) y=np.linalg.norm(x, axi ...

随机推荐

  1. WSDL2ObjC Unsupported Media Type

    调用WCF服务时,出这样的异常“415 Unsupported Media Type”, Because the WCF soap is v1.1, the http header should be ...

  2. sourceforge免费空间申请及使用笔记

    sourceforge免费空间申请及使用笔记 sourceforge免费空间安装WordPress博客程序 WordPress博客程序安装文件的上传需要使用工具WinSCP. 你需要在FTP地址填写的 ...

  3. 关于xcode不同版本打开相同工程问题

    今天刚下好了xcode7正式版,于是乎用其创建一个工程.随后关闭此工程用xcode6.3打开此工程.发现报错不能运行,随后网上查资料,可惜中文版的资料几乎可以说是没有,因此写下此文,以方便其他遇到此情 ...

  4. http://www.oreilly.com/catalog/errataunconfirmed.csp?isbn=9780596529321

    集体智慧勘误表: http://www.oreilly.com/catalog/errataunconfirmed.csp?isbn=9780596529321 ------------------- ...

  5. 【转】Vim十大必备插件

    [转]Vim十大必备插件 转自:http://my.oschina.net/zhoukuo/blog/336315 Taglist taglist是一个用于显示定位程序中各种符号的插件,例如宏定义.变 ...

  6. 各种效果的tab选项卡

    ;(function($){ $.fn.tabso=function( options ){ var opts=$.extend({},$.fn.tabso.defaults,options ); r ...

  7. Creating Materials at runtime And Issue of Shader.Find()

    Creating Materials at runtimehttp://forum.unity3d.com/threads/create-materials-at-runtime.72952/ //通 ...

  8. vs---错误收集并自己解决后归纳

    1.C++编译时,出现这样的错误 d:\program files\microsoft visual studio\vc98\include\stdio.h(36) : error C2143: sy ...

  9. oracle中schema指的是什么?

    看来有的人还是对schema的真正含义不太理解,现在我再次整理了一下,希望对大家有所帮助. 我们先来看一下他们的定义:A schema is a collection of database obje ...

  10. shell变量赋值 不能有空格的原因

    典型例子: a=date echo $a      成立 a =date echo $a     不成立 其实原因很简单 shell在解释命令时的原则是第一个符号标记只能是程序或者命令,有空格的时候第 ...