1. 聚类问题

所谓聚类问题,就是给定一个元素集合D,其中每个元素具有n个可观察属性,使用某种算法将D划分成k个子集,要求每个子集内部的元素之间相异度尽可能低,而不同子集的元素相异度尽可能高。

2. K-均值算法简介

k-means算法,也被称为k-平均或k-均值,是一种得到最广泛使用的聚类算法。 它是将各个聚类子集内的所有数据样本的均值作为该聚类的代表点,

算法的主要思想 是通过迭代过程把数据集划分为不同的类别,使得评价聚类性能的准则函数达到最优,从而使生成的每个聚类内紧凑,类间独立。这一算法不适合处理离散型属性,但是对于连续型具有较好的聚类效果。

k-means要解决的问题

3. 算法描述

1、为中心向量c1, c2, …, ck初始化k个种子

2、分组:

(1)将样本分配给距离其最近的中心向量

(2)由这些样本构造不相交( non-overlapping )的聚类

3、确定中心:

用各个聚类的中心向量作为新的中心

4、重复分组和确定中心的步骤,直至算法收敛。

4. Hadoop数据挖掘中的应用

(1) 将数据分割为多份,并将格式统一为<id , <A, B>>, A为当前页面,B为跳转前的界面。

(2) Map函数对数据进行操作,得到<<A,B> 1>;Reduce函数处理,得到<<A,B> n>,其中n为执行<A, B>操作的次数。

(3) 每个子群体分别将Reduce的结果转换为链表结构,链表头部保存k值,

K

(A, B)

(B, D)

(D, E)

(4) 子群体内部进行选择、交叉等操作。

a) 首先从原始数据中随机选择两条数据;

b) 随机插入其他位置生成新链表

c) 比较两条链表的长度,

i. 如果相等则判断头尾是否有重合,如果有则将两条链表重合部分连接生成新的链表;

ii. 如果不相等则合并为新的链表

(5) 每个子群体分别重复上述操作,直到k值不再变化

5. 程序设计

Map函数主要负责计算样本点到各个中心点到各个中心点的距离,并将其归类。Map函数程序设计伪码:

Map( < key, value > )

{

MinDis初始化一个极限最大值,作为样本点到各个中心点的最小距离值;

For( I=1; I <= k; index ++ ) //k为中心点个数

{

计算样本点到第i个中心点的距离ids

If( dis < MinDIs ){

MinDis = dis;

Index = I;

}}

Return < index, value >;

}

Reduce函数主要功能是更新中心点,其函数输入是Mapper函数的输出< key, list(value)>, 输出函数写入到HDFS中。Reduce函数伪代码如下:

Reduce( <key, list(value)> ){

While ( list.HasNext() ){

SUM += list.value; //将归属于中心点key的所有值相加

Key = SUM / N;

}

Return <key, value>;

}

聚类算法kmeans的更多相关文章

  1. ML.NET技术研究系列-2聚类算法KMeans

    上一篇博文我们介绍了ML.NET 的入门: ML.NET技术研究系列1-入门篇 本文我们继续,研究分享一下聚类算法k-means. 一.k-means算法简介 k-means算法是一种聚类算法,所谓聚 ...

  2. [聚类算法] K-means 算法

    聚类 和 k-means简单概括. 聚类是一种 无监督学习 问题,它的目标就是基于 相似度 将相似的子集聚合在一起. k-means算法是聚类分析中使用最广泛的算法之一.它把n个对象根据它们的属性分为 ...

  3. 聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut

    原文请戳:http://blog.csdn.net/abcjennifer/article/details/8170687 聚类算法是ML中一个重要分支,一般采用unsupervised learni ...

  4. 数据挖掘之聚类算法K-Means总结

    序 由于项目需要,需要对数据进行处理,故而又要滚回来看看paper,做点小功课,这篇文章只是简单的总结一下基础的Kmeans算法思想以及实现: 正文: 1.基础Kmeans算法. Kmeans算法的属 ...

  5. 机器学习sklearn19.0聚类算法——Kmeans算法

    一.关于聚类及相似度.距离的知识点 二.k-means算法思想与流程 三.sklearn中对于kmeans算法的参数 四.代码示例以及应用的知识点简介 (1)make_blobs:聚类数据生成器 sk ...

  6. 【转】 聚类算法-Kmeans算法的简单实现

    1. 聚类与分类的区别: 首先要来了解的一个概念就是聚类,简单地说就是把相似的东西分到一组,同 Classification (分类)不同,对于一个 classifier ,通常需要你告诉它“这个东西 ...

  7. 聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut

    聚类算法是ML中一个重要分支,一般采用unsupervised learning进行学习,本文根据常见聚类算法分类讲解K-Means, K-Medoids, GMM, Spectral cluster ...

  8. 机器学习 - 算法 - 聚类算法 K-MEANS / DBSCAN算法

    聚类算法 概述 无监督问题 手中无标签 聚类 将相似的东西分到一组 难点 如何 评估, 如何 调参 基本概念 要得到的簇的个数  - 需要指定 K 值 质心 - 均值, 即向量各维度取平均 距离的度量 ...

  9. 数据聚类算法-K-means算法

    深入浅出K-Means算法 摘要: 在数据挖掘中,K-Means算法是一种 cluster analysis 的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法. K-Mea ...

随机推荐

  1. Vijos1019 补丁VS错误[最短路 状态压缩]

      描述 错误就是人们所说的Bug.用户在使用软件时总是希望其错误越少越好,最好是没有错误的.但是推出一个没有错误的软件几乎不可能,所以很多软件公司都在疯狂地发放补丁(有时这种补丁甚至是收费的).T公 ...

  2. pitch yaw roll 的区别

    http://blog.163.com/vipwdp@126/blog/static/150224366201281935518196/

  3. 我的WafBypass之道

    0x00 前言  去年到现在就一直有人希望我出一篇关于waf绕过的文章,我觉得这种老生常谈的话题也没什么可写的.很多人一遇到waf就发懵,不知如何是好,能搜到的各种姿势也是然并卵.但是积累姿势的过程也 ...

  4. poj2632 Crashing Robots

    Crashing Robots Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9859   Accepted: 4209 D ...

  5. zoj 1610

    Count the Colors Time Limit: 2 Seconds      Memory Limit: 65536 KB Painting some colored segments on ...

  6. mysql密码遗忘和登陆报错问题

    mysql登录密码忘记,其实解决办法很简单,只需要在mysql的主配置文件my.cnf里添加一行"跳过授权表"的参数选择即可! 在my.cnf中添加下面一行:[root@test- ...

  7. Jenkins 安装

    1. 调整tomcat的jvm配置, 以免内存不够, 在catalina.sh中 #!bin/sh下添加 JAVA_OPTS="-server -Xms1024m -Xmx1024m -XX ...

  8. jdbc连接数据库总结

    jdbc支持多种数据库,比如说oracle, mysql, mssql,现在总结一下连接各种数据库的相关知识 1,mysql连接,代码如下 Class.forName("com.mysql. ...

  9. vs2015企业版太大了

    安装教程 http://www.cnblogs.com/mephisto/archive/2015/07/22/4666032.html#!comments 新功能 http://news.cnblo ...

  10. JavaScript中的this关键字

    在JavaScript中,函数的this关键字的行为与其他语言相比有很多不同.在JavaScript的严格模式和非严格模式下也略有区别. 在绝大多数情况下,函数的调用方式决定了this的值.this不 ...