HBase是三维有序存储的,通过rowkey(行键),column key(column family和qualifier)和TimeStamp(时间戳)这个三个维度可以对HBase中的数据进行快速定位。

HBase中rowkey可以唯一标识一行记录,在HBase查询的时候,有以下几种方式:

  1. 通过get方式,指定rowkey获取唯一一条记录
  2. 通过scan方式,设置startRow和stopRow参数进行范围匹配
  3. 全表扫描,即直接扫描整张表中所有行记录

rowkey长度原则

rowkey是一个二进制码流,可以是任意字符串,最大长度 64kb ,实际应用中一般为10-100bytes,以byte[] 形式保存,一般设计成定长。

建议越短越好,不要超过16个字节,原因如下:

  1. 数据的持久化文件HFile中是按照KeyValue存储的,如果rowkey过长,比如超过100字节,1000w行数据,光rowkey就要占用100*1000w=10亿个字节,将近1G数据,这样会极大影响HFile的存储效率;
  2. MemStore将缓存部分数据到内存,如果rowkey字段过长,内存的有效利用率就会降低,系统不能缓存更多的数据,这样会降低检索效率。
  3. 目前操作系统都是64位系统,内存8字节对齐,控制在16个字节,8字节的整数倍利用了操作系统的最佳特性。

rowkey散列原则

如果rowkey按照时间戳的方式递增,不要将时间放在二进制码的前面,建议将rowkey的高位作为散列字段,由程序随机生成,低位放时间字段,这样将提高数据均衡分布在每个RegionServer,以实现负载均衡的几率。如果没有散列字段,首字段直接是时间信息,所有的数据都会集中在一个RegionServer上,这样在数据检索的时候负载会集中在个别的RegionServer上,造成热点问题,会降低查询效率。

rowkey唯一原则

必须在设计上保证其唯一性,rowkey是按照字典顺序排序存储的,因此,设计rowkey的时候,要充分利用这个排序的特点,将经常读取的数据存储到一块,将最近可能会被访问的数据放到一块。

什么是热点

HBase中的行是按照rowkey的字典顺序排序的,这种设计优化了scan操作,可以将相关的行以及会被一起读取的行存取在临近位置,便于scan。然而糟糕的rowkey设计是热点的源头。 热点发生在大量的client直接访问集群的一个或极少数个节点(访问可能是读,写或者其他操作)。大量访问会使热点region所在的单个机器超出自身承受能力,引起性能下降甚至region不可用,这也会影响同一个RegionServer上的其他region,由于主机无法服务其他region的请求。 设计良好的数据访问模式以使集群被充分,均衡的利用。

为了避免写热点,设计rowkey使得不同行在同一个region,但是在更多数据情况下,数据应该被写入集群的多个region,而不是一个。

下面是一些常见的避免热点的方法以及它们的优缺点:

加盐

这里所说的加盐不是密码学中的加盐,而是在rowkey的前面增加随机数,具体就是给rowkey分配一个随机前缀以使得它和之前的rowkey的开头不同。分配的前缀种类数量应该和你想使用数据分散到不同的region的数量一致。加盐之后的rowkey就会根据随机生成的前缀分散到各个region上,以避免热点。

哈希

哈希会使同一行永远用一个前缀加盐。哈希也可以使负载分散到整个集群,但是读却是可以预测的。使用确定的哈希可以让客户端重构完整的rowkey,可以使用get操作准确获取某一个行数据

反转

第三种防止热点的方法时反转固定长度或者数字格式的rowkey。这样可以使得rowkey中经常改变的部分(最没有意义的部分)放在前面。这样可以有效的随机rowkey,但是牺牲了rowkey的有序性。

反转rowkey的例子以手机号为rowkey,可以将手机号反转后的字符串作为rowkey,这样的就避免了以手机号那样比较固定开头导致热点问题

时间戳反转

一个常见的数据处理问题是快速获取数据的最近版本,使用反转的时间戳作为rowkey的一部分对这个问题十分有用,可以用Long.Max_Value - timestamp追加到key的末尾,例如[key][reverse_timestamp] ,[key] 的最新值可以通过scan [key]获得[key]的第一条记录,因为HBase中rowkey是有序的,第一条记录是最后录入的数据。

比如需要保存一个用户的操作记录,按照操作时间倒序排序,在设计rowkey的时候,可以这样设计

[userId反转][Long.Max_Value - timestamp],在查询用户的所有操作记录数据的时候,直接指定反转后的userId,startRow是[userId反转][000000000000],stopRow是[userId反转][Long.Max_Value - timestamp]

如果需要查询某段时间的操作记录,startRow是[user反转][Long.Max_Value - 起始时间],stopRow是[userId反转][Long.Max_Value - 结束时间]

其他一些建议

  • 尽量减少行和列的大小在HBase中,value永远和它的key一起传输的。当具体的值在系统间传输时,它的rowkey,列名,时间戳也会一起传输。如果你的rowkey和列名很大,甚至可以和具体的值相比较,那么你将会遇到一些有趣的问题。HBase storefiles中的索引(有助于随机访问)最终占据了HBase分配的大量内存,因为具体的值和它的key很大。可以增加block大小使得storefiles索引再更大的时间间隔增加,或者修改表的模式以减小rowkey和列名的大小。压缩也有助于更大的索引。

  • 列族尽可能越短越好,最好是一个字符

  • 冗长的属性名虽然可读性好,但是更短的属性名存储在HBase中会更好

HBase的RowKey设计原则的更多相关文章

  1. Hadoop生态圈-Hbase的rowKey设计原则

    Hadoop生态圈-Hbase的rowKey设计原则 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.

  2. Hbase中rowkey设计原则

    1.热点问题 在某一时间段,有大量的数据同时对一个region进行操作 2.原因 对rowkey的设计不合理 对rowkey的划分不合理 3.解决方式 rowkey是hbase的读写唯一标识 最大长度 ...

  3. 078 Hbase中rowkey设计原则

    1.热点问题 在某一时间段,有大量的数据同时对一个region进行操作 2.原因 对rowkey的设计不合理 对rowkey的划分不合理 3.解决方式 rowkey是hbase的读写唯一标识 最大长度 ...

  4. 大数据性能调优之HBase的RowKey设计

    1 概述 HBase是一个分布式的.面向列的数据库,它和一般关系型数据库的最大区别是:HBase很适合于存储非结构化的数据,还有就是它基于列的而不是基于行的模式. 既然HBase是采用KeyValue ...

  5. HBase之六:HBase的RowKey设计

    数据模型 我们可以将一个表想象成一个大的映射关系,通过行健.行健+时间戳或行键+列(列族:列修饰符),就可以定位特定数据,Hbase是稀疏存储数据的,因此某些列可以是空白的, Row Key Time ...

  6. Hbase的rowkey设计

    HBase的rowKey设计技巧 1.设计宗旨与目标 主要目的就是针对特定的业务模型,按照rowKey进行预分区设计,使之后面加入的数据能够尽可能的分散于不同的rowKey中.比如复合RowKey. ...

  7. Hbase Rowkey设计原则

    Hbase是三维有序存储的,通过rowkey(行键),column key(column family和qualifier)和TimeStamp(时间戳)这三个维度可以对HBase中的数据进行快速定位 ...

  8. HBase学习之路 (十)HBase表的设计原则

    建表高级属性 下面几个 shell 命令在 hbase 操作中可以起到很大的作用,且主要体现在建表的过程中,看 下面几个 create 属性 1. BLOOMFILTER 默认是 NONE 是否使用布 ...

  9. hbase 利用rowkey设计进行多条件查询

    摘要 本文主要内容是通过合理Hbase 行键(rowkey)设计实现快速的多条件查询,所采用的方法将所有要用于查询中的列经过一些处理后存储在rowkey中,查询时通过rowkey进行查询,提高rowk ...

随机推荐

  1. vtune 错误

    The Data Cannot be displayed,there is no viewpoint available for data 1. In a console, run your appl ...

  2. HDU 1171 背包

    Big Event in HDU Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. Jmeter教程索引

    一.基础部分: 使用Jmeter进行http接口测试 Jmeter之Http Cookie Manager Jmeter之HTTP Request Defaults Jmeter之逻辑控制器(Logi ...

  4. 关于ASP.NET或VS2005 搭建三层架构的理解

    最近想学习ASP.NET建网站,关于ASP.NET或VS2005 搭建三层架构的理解,网上摘录了一些资料,对于第(2)点的讲解让我理解印象深刻,如下: (1)为何使用N层架构? 因为每一层都可以在仅仅 ...

  5. 浏览器兼容 copyToClipboard("拷贝内容")

    function copyToClipboard(txt) { if (window.clipboardData) { window.clipboardData.clearData(); clipbo ...

  6. RabbitMQ/JAVA (发布/订阅模式)

    发布/订阅模式即生产者将消息发送给多个消费者. 下面介绍几个在发布/订阅模式中的关键概念-- 1. Exchanges (转发器) 可能原来我们都是基于一个队列发送和接收消息.现在介绍一下完整的消息传 ...

  7. BZOJ 4034 BIT & Dfs序

    调了恒久突然发现输出优化忘记带负号了.. 就是差分树状数组维护Dfs序即可. #include <iostream> #include <cstring> #include & ...

  8. 关于VC工程的组成

    刚刚建立的工程,其中 .vcxproj文件是生成的工程文件,它包含当前工程的设置和工程所包含的文件等信息..vcxproj.filters文件存放工程的虚拟目录信息,也就是在解决方案浏览器中的目录结构 ...

  9. 68. 蓄水池抽样(Reservoir Sampling)

    [本文链接] http://www.cnblogs.com/hellogiser/p/reservoir-sampling.html 问题起源于编程珠玑Column 12中的题目10,其描述如下: H ...

  10. 解决 Redis Cluster 扩容故障

    双11啦,为了给商品详细redis进行扩容,扩容动作就放在了今天晚上进行,很不巧,今天晚上是个多事之秋: 做了次数据恢复,做了次集群迁移,在迁移的时候还踩了个坑! 集群中有个节点挂掉了,并且报错信息如 ...