递归O(NlgN)求解逆序数
导言
第一次了解到逆序数是在高等代数课程上。当时想计算一个数列的逆序数直觉就是用两重循环O(n^2)暴力求解。现在渐渐对归并算法有了一定的认识,因此决定自己用C++代码小试牛刀。
逆序数简介
由自然数1,2…,n组成的不重复的每一种有确定次序的排列,称为一个n级排列(简称为排列);或者一般的,n个互不同元素排成一列称为“一个n级排列”。例如,1234和4312都是4级排列,而24315是一个5级排列。
在一个n级排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个“逆序”。
例子:
1,2,3,4 成为自然排列 逆序数为 0
3,2,4,1 一列数 逆序排列有(3,2) (3,1) (2,1) (4,1) 所以逆序数是4
代码实现
#include <cstdio>
#include <cstring> const int N = ; //测试数组的大小 int cnt; //全局变量 void mergeSort(int *a,int p,int q,int *T){ if(p+>=q) return; int m=p+(q-p)/; mergeSort(a,p,m,T); mergeSort(a,m,q,T); //merge for(int x=p,y=m,i=p;i<q;i++){ if(x<m&&y<q&&a[x]<a[y] || y>=q) T[i]=a[x++]; //往‘左边’加 else{ T[i] = a[y++]; cnt += (m-x); //此处为重点,每向加入右边部分一个数时,逆序数应增加左边尚未被加入T的元素个数 } } for(int i=p;i<q;i++) a[i] = T[i]; } int main(){ int T[N]; //辅助数组,即额外空间代价O(N) int a[]={,,,}; cnt = ; //初始cnt为0 mergeSort(a,,N,T); printf("逆序数为:%d\n",cnt); return ; }
结语
对比先前两重循环暴力求解逆序数的做法,可以证明归并求解的时间复杂度是O(NlgN)。因此,当N较大时,可以发现本归并算法的明显高效很多。
递归O(NlgN)求解逆序数的更多相关文章
- HDU 6318 Swaps and Inversions 思路很巧妙!!!(转换为树状数组或者归并求解逆序数)
Swaps and Inversions Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- POJ 2299 Ultra-QuickSort 求逆序数 (归并或者数状数组)此题为树状数组入门题!!!
Ultra-QuickSort Time Limit: 7000MS Memory Limit: 65536K Total Submissions: 70674 Accepted: 26538 ...
- 逆序数 POJ 2299 Ultra-QuickSort
题目传送门 /* 题意:就是要求冒泡排序的交换次数. 逆序数:在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序. 一个排列中逆序的总数就称为这个排列的逆 ...
- nyoj117 求逆序数
求逆序数 时间限制:2000 ms | 内存限制:65535 KB 难度:5 描述 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中 ...
- HDU 1394 树状数组+离散化求逆序数
对于求逆序数问题,学会去利用树状数组进行转换求解方式,是很必要的. 一般来说我们求解逆序数,是在给定一串序列里,用循环的方式找到每一个数之前有多少个比它大的数,算法的时间复杂度为o(n2). 那么我们 ...
- 【Algorithm】逆序数的分治求解
逆序数的分治求解,时间复杂度O(nlgn).基本思想是在归并排序的基础上加逆序计数. #include <iostream> #include <cstdio> #includ ...
- 1.7 逆序数与归并排序[inversion pairs by merge sort]
[本文链接] http://www.cnblogs.com/hellogiser/p/inversion-pairs-by-merge-sort.html [题目] 编程之美1.7光影切割问题可以进一 ...
- 51 Nod 1107 斜率小于0的连线数量 (转换为归并求逆序数或者直接树状数组,超级详细题解!!!)
1107 斜率小于0的连线数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 二维平面上N个点之间共有C(n,2)条连线.求这C(n,2)条线中斜率小于0的线 ...
- HDU 1394 Minimum Inversion Number(最小逆序数 线段树)
Minimum Inversion Number [题目链接]Minimum Inversion Number [题目类型]最小逆序数 线段树 &题意: 求一个数列经过n次变换得到的数列其中的 ...
随机推荐
- web端通信技术
1.web端通信技术:长连接.长轮询.websocket; 什么是长连接.长轮询? 就是客户端不停的向服务器发送请求以获取最新的数据信息.这里的“不停”其实是有停止的,只是我们人眼无法分辨是否停止,它 ...
- mysql下mysqladmin日常管理命令总结
mysqladmin 工具的使用格式:mysqladmin [option] command [command option] command ......参数选项:-c number 自动运行次数统 ...
- SQL探险
两张表,取相同字段比较 相同则显示true 否则FALSE.
- 053医疗项目-模块五:权限设置-将用户操作权限写入Session
权限管理指的是用户授权,与拦截器没有关系.拦截器只是一个技术,也可以用别的技术来实现的.别人问你权限管理,可不要和人家说什么拦截器.要说用户授权 前一篇文章是把实现了不同的用户呈现不用的菜单.这一篇文 ...
- 苹果iPhone如何区分港版、国行、水货
要想分辨所购买的苹果产品[iPhone 4.iPod Touch.iPad 2.iMac.MacBook及iPhone 4S]是大陆行货.水货.港货还是其它,其实很简单.今天来教大家如何区分.大陆行货 ...
- git 保存本地更改而不需要推到远程
git commit 修改到本地分支 repo sync . 更新分支 git checkout local 切换到本地分支 git rebase 远程 更新远程分支到本地并且将本地分支节点推到最顶
- nginx学习(2):启动gzip、虚拟主机、请求转发、负载均衡
一.启用gzip gzip on; gzip_min_length 1k; gzip_buffers 4 16k; gzip_http_version 1.1; gzip_comp_level 2; ...
- JAVA CDI 学习(1) - @Inject基本用法
CDI(Contexts and Dependency Injection 上下文依赖注入),是JAVA官方提供的依赖注入实现,可用于Dynamic Web Module中,先给3篇老外的文章,写得很 ...
- swift-sharesdk集成微信、Facebook第三方登录
好久没有写博客了.最近忙得没有时间更新博客,很忙很忙. 今天就把自己做过的第三方集成和大家分享一下,请大家多多指教. 第一步: 一.获取AppKey(去官方平台注册) 二.下载SDK 三.快速集成 第 ...
- Apache POI 实现对 Excel 文件读写
1. Apache POI 简介 Apache POI是Apache软件基金会的开放源码函式库. 提供API给Java应用程序对Microsoft Office格式档案读和写的功能. 老外起名字总是很 ...