PDF version

PMF

A discrete random variable $X$ is said to have a Poisson distribution with parameter $\lambda > 0$, if the probability mass function of $X$ is given by $$f(x; \lambda) = \Pr(X=x) = e^{-\lambda}{\lambda^x\over x!}$$ for $x=0, 1, 2, \cdots$.

Proof:

$$ \begin{align*} \sum_{x=0}^{\infty}f(x; \lambda) &= \sum_{x=0}^{\infty} e^{-\lambda}{\lambda^x\over x!}\\ & = e^{-\lambda}\sum_{x=0}^{\infty}{\lambda^x\over x!}\\ &= e^{-\lambda}\left(1 + \lambda + {\lambda^2 \over 2!}+ {\lambda^3\over 3!}+ \cdots\right)\\ & = e^{-\lambda} \cdot e^{\lambda}\\ & = 1 \end{align*} $$

Mean

The expected value is $$\mu = E[X] = \lambda$$

Proof:

$$ \begin{align*} E[X] &= \sum_{x=0}^{\infty}xe^{-\lambda}{\lambda^x\over x!}\\ & = \sum_{x=1}^{\infty}e^{-\lambda}{\lambda^x\over (x-1)!}\\ & =\lambda e^{-\lambda}\sum_{x=1}^{\infty}{\lambda^{x-1}\over (x-1)!}\\ & = \lambda e^{-\lambda}\left(1+\lambda + {\lambda^2\over 2!} + {\lambda^3\over 3!}+\cdots\right)\\ & = \lambda e^{-\lambda} e^{\lambda}\\ & = \lambda \end{align*} $$

Variance

The variance is $$\sigma^2 = \mbox{Var}(X) = \lambda$$

Proof:

$$ \begin{align*} E\left[X^2\right] &= \sum_{x=0}^{\infty}x^2e^{-\lambda}{\lambda^x\over x!}\\ &= \sum_{x=1}^{\infty}xe^{-\lambda}{\lambda^x\over (x-1)!}\\ &= \lambda\sum_{x=1}^{\infty}xe^{-\lambda}{\lambda^{x-1}\over (x-1)!}\\ & = \lambda\sum_{x=1}^{\infty}(x-1+1)e^{-\lambda}{\lambda^{x-1}\over (x-1)!}\\ &= \lambda\left(\sum_{x=1}^{\infty}(x-1)e^{-\lambda}{\lambda^{x-1}\over (x-1)!} + \sum_{x=1}^{\infty} e^{-\lambda}{\lambda^{x-1}\over (x-1)!}\right)\\ &= \lambda\left(\lambda\sum_{x=2}^{\infty}e^{-\lambda}{\lambda^{x-2}\over (x-2)!} + \sum_{x=1}^{\infty} e^{-\lambda}{\lambda^{x-1}\over (x-1)!}\right)\\ & = \lambda(\lambda+1) \end{align*} $$ Hence the variance is $$ \begin{align*} \mbox{Var}(X)& = E\left[X^2\right] - E[X]^2\\ & = \lambda(\lambda + 1) - \lambda^2\\ & = \lambda \end{align*} $$

Examples

1. Let $X$ be Poisson distributed with intensity $\lambda=10$. Determine the expected value $\mu$, the standard deviation $\sigma$, and the probability $P\left(|X-\mu| \geq 2\sigma\right)$. Compare with Chebyshev's Inequality.

Solution:

The Poisson distribution mass function is $$f(x) = e^{-\lambda}{\lambda^x\over x!},\ x=0, 1, 2, \cdots$$ The expected value is $$\mu= \lambda=10$$ Then the standard deviation is $$\sigma = \sqrt{\lambda} = 3.162278$$ The probability that $X$ takes a value more than two standard deviations from $\mu$ is $$ \begin{align*} P\left(|X-\lambda| \geq 2\sqrt{\lambda}\right) &= P\left(X \leq \lambda-2\sqrt{\lambda}\right) + P\left(X \geq \lambda + 2\sqrt{\lambda}\right)\\ & = P(X \leq 3) + P(X \geq 17)\\ & = 0.03737766 \end{align*} $$ R code:

sum(dpois(c(0:3), 10)) + 1 - sum(dpois(c(0:16), 10))
# [1] 0.03737766

Chebyshev's Inequality gives the weaker estimation $$P\left(|X - \mu| \geq 2\sigma\right) \leq {1\over2^2} = 0.25$$

2. In a certain shop, an average of ten customers enter per hour. What is the probability $P$ that at most eight customers enter during a given hour.

Solution:

Recall that the Poisson distribution mass function is $$P(X=x) = e^{-\lambda}{\lambda^x\over x!}$$ and $\lambda=10$. So we have $$ \begin{align*} P(X \leq 8) &= \sum_{x=0}^{8}e^{-10}{10^{x}\over x!}\\ &= 0.3328197 \end{align*} $$ R code:

sum(dpois(c(0:8), 10))
# [1] 0.3328197
ppois(8, 10)
# [1] 0.3328197

3. What is the probability $Q$ that at most 80 customers enter the shop from the previous problem during a day of 10 hours?

Solution:

The number $Y$ of customers during an entire day is the sum of ten independent Poisson distribution with parameter $\lambda=10$. $$Y = X_1 + \cdots + X_{10}$$ Thus $Y$ is also a Poisson distribution with parameter $\lambda = 100$. Thus we have $$ \begin{align*} P(Y \leq 80) &= \sum_{y=0}^{80}e^{-100}{100^{y}\over y!}\\ &= 0.02264918 \end{align*} $$ R code:

sum(dpois(c(0:80), 100))
# [1] 0.02264918
ppois(80, 100)
# [1] 0.02264918

Alternatively, we can use normal approximation (generally when $\lambda > 9$) with $\mu = \lambda = 100$ and $\sigma = \sqrt{\lambda}=10$. $$ \begin{align*} P(Y \leq 80) &= \Phi\left({80.5-100\over 10 }\right)\\ &= \Phi\left({-19.5\over10}\right)\\ &=0.02558806 \end{align*} $$ R code:

pnorm(-19.5/10)
# [1] 0.02558806

4. At the 2006 FIFA World Championship, a total of 64 games were played. The number of goals per game was distributed as follows: 8 games with 0 goals 13 games with 1 goal 18 games with 2 goals 11 games with 3 goals 10 games with 4 goals 2 games with 5 goals 2 games with 6 goals Determine whether the number of goals per game may be assumed to be Poisson distributed.

Solution:

We can use Chi-squared test. The observations are in Table 1.

On the other hand, if this is a Poisson distribution then the parameter should be $$ \begin{align*} \lambda &= \mu\\ & = {0\times8 + 1\times13 +\cdots + 6\times2 \over 8+13+\cdots+2}\\ & = {144\over 64}\\ &=2.25 \end{align*} $$ And the Poisson point probabilities are listed in Table 2.

And hence the expected numbers are listed in Table 3.

Note that we have merged some categories in order to get $E_i \geq 3$. The statistic is $$ \begin{align*} \chi^2 &= \sum{(O-E)^2\over E}\\ &= {(8-6.720)^2 \over 6.720} + \cdots + {(4-4.992)^2 \over 4.992}\\ &= 2.112048 \end{align*} $$ There are six categories and thus the degree of freedom is $6-1 = 5$. The significance probability is 0.8334339. R code:

prob = c(round(dpois(c(0:6), 2.25), 3),
+ 1 - round(sum(dpois(c(0:6), 2.25)), 3))
expect = prob * 64
prob; expect
# [1] 0.105 0.237 0.267 0.200 0.113 0.051 0.019 0.008
# [1] 6.720 15.168 17.088 12.800 7.232 3.264 1.216 0.512
O = c(8, 13, 18, 11, 10, 4)
E = c(expect[1:5], sum(expect[6:8]))
O; E
# [1] 8 13 18 11 10 4
# [1] 6.720 15.168 17.088 12.800 7.232 4.992
chisq = sum((O - E) ^ 2 / E)
1 - pchisq(chisq, 5)
# [1] 0.8334339

The hypothesis is $$H_0: \mbox{Poisson distribution},\ H_1: \mbox{Not Poisson distribution}$$ Since $p = 0.8334339 > 0.05$, so we accept $H_0$. That is, it is reasonable to claim that the number of goals per game is Poisson distributed.

Reference

  1. Ross, S. (2010). A First Course in Probability (8th Edition). Chapter 4. Pearson. ISBN: 978-0-13-603313-4.
  2. Brink, D. (2010). Essentials of Statistics: Exercises. Chapter 5 & 9. ISBN: 978-87-7681-409-0.

基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution的更多相关文章

  1. 基本概率分布Basic Concept of Probability Distributions 8: Normal Distribution

    PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...

  2. 基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution

    PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \al ...

  3. 基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution

    PDF version PDF & CDF The exponential probability density function (PDF) is $$f(x; \lambda) = \b ...

  4. 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution

    PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...

  5. 基本概率分布Basic Concept of Probability Distributions 3: Geometric Distribution

    PDF version PMF Suppose that independent trials, each having a probability $p$, $0 < p < 1$, o ...

  6. 基本概率分布Basic Concept of Probability Distributions 1: Binomial Distribution

    PDF下载链接 PMF If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$ ...

  7. 基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution

    PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...

  8. PRML Chapter 2. Probability Distributions

    PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...

  9. Common Probability Distributions

    Common Probability Distributions Probability Distribution A probability distribution describes the p ...

随机推荐

  1. Apache POI 实现对 Excel 文件读写

    1. Apache POI 简介 Apache POI是Apache软件基金会的开放源码函式库. 提供API给Java应用程序对Microsoft Office格式档案读和写的功能. 老外起名字总是很 ...

  2. UWP开源项目 LLQNotifier 页面间通信利器(移植EventBus)

    前言 EventBus是一个Android版本的页面间通信库,这个库让页面间的通信变得十分容易且大幅降低了页面之间的耦合.小弟之前玩Android的时候就用得十分顺手,现在玩uwp就觉得应该在这平台也 ...

  3. unity3d Vector3.Lerp解析

    Vector3.Lerp:http://www.ceeger.com/Script/Vector3/Vector3.Lerp.html 手册中描述的不是很详细,什么叫“按照数字t在from到to之间插 ...

  4. ASP.NET 系列:单元测试之StructureMap

    ASP.NET使用StructureMap等依赖注入组件时最重要就是EntityFramework的DbContext对象要保证在每次HttpRequest只有一个DbContext实例,这里将使用第 ...

  5. .Net分布式异常报警系统-项目介绍

    后台管理  首页统计的是当天每个时段的异常数量, 使用的是echarts组件, 红框所示, 可以选择不同的系统进行查看.     得益于echarts的强大功能, 你可以使用柱状图来查看.     站 ...

  6. Excel导入导出,通过datatable转存(篇一)

    //导入数据 public ActionResult ExpressInfoImport() { var ptcp = new BaseResponse() { DoFlag = true, DoRe ...

  7. android之拍照与摄像

    拍照和摄像的意图很简答,这里直接贴代码 布局文件 <?xml version="1.0" encoding="utf-8"?> <Linear ...

  8. 最短判断IE的办法

    if(!!-[1,]){ return }; 无意中看到这样一行代码,经查是用来判断IE的代码,非常精简,原理如下: [1,],这是一个数组,IE和标准浏览器对这样一个数组的解析是不一样的 alert ...

  9. 【Python】 [基础] 条件判断 与 循环 与dict和set

    # 条件判断 elif:  else if 的作用 注意: : [冒号]BMI =w/(h*h) if BMI<15:    print('较轻')elif BMI<25:    prin ...

  10. 74 partprobe-磁盘管理

    partprobe命令用于重读分区表,当出现删除文件后,出现仍然占用空间.可以partprobe在不重启的情况下重读分区. 语法 partprobe (选项) (参数) 选项 -d:不更新内核: -s ...