PDF version

PMF

A discrete random variable $X$ is said to have a Poisson distribution with parameter $\lambda > 0$, if the probability mass function of $X$ is given by $$f(x; \lambda) = \Pr(X=x) = e^{-\lambda}{\lambda^x\over x!}$$ for $x=0, 1, 2, \cdots$.

Proof:

$$ \begin{align*} \sum_{x=0}^{\infty}f(x; \lambda) &= \sum_{x=0}^{\infty} e^{-\lambda}{\lambda^x\over x!}\\ & = e^{-\lambda}\sum_{x=0}^{\infty}{\lambda^x\over x!}\\ &= e^{-\lambda}\left(1 + \lambda + {\lambda^2 \over 2!}+ {\lambda^3\over 3!}+ \cdots\right)\\ & = e^{-\lambda} \cdot e^{\lambda}\\ & = 1 \end{align*} $$

Mean

The expected value is $$\mu = E[X] = \lambda$$

Proof:

$$ \begin{align*} E[X] &= \sum_{x=0}^{\infty}xe^{-\lambda}{\lambda^x\over x!}\\ & = \sum_{x=1}^{\infty}e^{-\lambda}{\lambda^x\over (x-1)!}\\ & =\lambda e^{-\lambda}\sum_{x=1}^{\infty}{\lambda^{x-1}\over (x-1)!}\\ & = \lambda e^{-\lambda}\left(1+\lambda + {\lambda^2\over 2!} + {\lambda^3\over 3!}+\cdots\right)\\ & = \lambda e^{-\lambda} e^{\lambda}\\ & = \lambda \end{align*} $$

Variance

The variance is $$\sigma^2 = \mbox{Var}(X) = \lambda$$

Proof:

$$ \begin{align*} E\left[X^2\right] &= \sum_{x=0}^{\infty}x^2e^{-\lambda}{\lambda^x\over x!}\\ &= \sum_{x=1}^{\infty}xe^{-\lambda}{\lambda^x\over (x-1)!}\\ &= \lambda\sum_{x=1}^{\infty}xe^{-\lambda}{\lambda^{x-1}\over (x-1)!}\\ & = \lambda\sum_{x=1}^{\infty}(x-1+1)e^{-\lambda}{\lambda^{x-1}\over (x-1)!}\\ &= \lambda\left(\sum_{x=1}^{\infty}(x-1)e^{-\lambda}{\lambda^{x-1}\over (x-1)!} + \sum_{x=1}^{\infty} e^{-\lambda}{\lambda^{x-1}\over (x-1)!}\right)\\ &= \lambda\left(\lambda\sum_{x=2}^{\infty}e^{-\lambda}{\lambda^{x-2}\over (x-2)!} + \sum_{x=1}^{\infty} e^{-\lambda}{\lambda^{x-1}\over (x-1)!}\right)\\ & = \lambda(\lambda+1) \end{align*} $$ Hence the variance is $$ \begin{align*} \mbox{Var}(X)& = E\left[X^2\right] - E[X]^2\\ & = \lambda(\lambda + 1) - \lambda^2\\ & = \lambda \end{align*} $$

Examples

1. Let $X$ be Poisson distributed with intensity $\lambda=10$. Determine the expected value $\mu$, the standard deviation $\sigma$, and the probability $P\left(|X-\mu| \geq 2\sigma\right)$. Compare with Chebyshev's Inequality.

Solution:

The Poisson distribution mass function is $$f(x) = e^{-\lambda}{\lambda^x\over x!},\ x=0, 1, 2, \cdots$$ The expected value is $$\mu= \lambda=10$$ Then the standard deviation is $$\sigma = \sqrt{\lambda} = 3.162278$$ The probability that $X$ takes a value more than two standard deviations from $\mu$ is $$ \begin{align*} P\left(|X-\lambda| \geq 2\sqrt{\lambda}\right) &= P\left(X \leq \lambda-2\sqrt{\lambda}\right) + P\left(X \geq \lambda + 2\sqrt{\lambda}\right)\\ & = P(X \leq 3) + P(X \geq 17)\\ & = 0.03737766 \end{align*} $$ R code:

sum(dpois(c(0:3), 10)) + 1 - sum(dpois(c(0:16), 10))
# [1] 0.03737766

Chebyshev's Inequality gives the weaker estimation $$P\left(|X - \mu| \geq 2\sigma\right) \leq {1\over2^2} = 0.25$$

2. In a certain shop, an average of ten customers enter per hour. What is the probability $P$ that at most eight customers enter during a given hour.

Solution:

Recall that the Poisson distribution mass function is $$P(X=x) = e^{-\lambda}{\lambda^x\over x!}$$ and $\lambda=10$. So we have $$ \begin{align*} P(X \leq 8) &= \sum_{x=0}^{8}e^{-10}{10^{x}\over x!}\\ &= 0.3328197 \end{align*} $$ R code:

sum(dpois(c(0:8), 10))
# [1] 0.3328197
ppois(8, 10)
# [1] 0.3328197

3. What is the probability $Q$ that at most 80 customers enter the shop from the previous problem during a day of 10 hours?

Solution:

The number $Y$ of customers during an entire day is the sum of ten independent Poisson distribution with parameter $\lambda=10$. $$Y = X_1 + \cdots + X_{10}$$ Thus $Y$ is also a Poisson distribution with parameter $\lambda = 100$. Thus we have $$ \begin{align*} P(Y \leq 80) &= \sum_{y=0}^{80}e^{-100}{100^{y}\over y!}\\ &= 0.02264918 \end{align*} $$ R code:

sum(dpois(c(0:80), 100))
# [1] 0.02264918
ppois(80, 100)
# [1] 0.02264918

Alternatively, we can use normal approximation (generally when $\lambda > 9$) with $\mu = \lambda = 100$ and $\sigma = \sqrt{\lambda}=10$. $$ \begin{align*} P(Y \leq 80) &= \Phi\left({80.5-100\over 10 }\right)\\ &= \Phi\left({-19.5\over10}\right)\\ &=0.02558806 \end{align*} $$ R code:

pnorm(-19.5/10)
# [1] 0.02558806

4. At the 2006 FIFA World Championship, a total of 64 games were played. The number of goals per game was distributed as follows: 8 games with 0 goals 13 games with 1 goal 18 games with 2 goals 11 games with 3 goals 10 games with 4 goals 2 games with 5 goals 2 games with 6 goals Determine whether the number of goals per game may be assumed to be Poisson distributed.

Solution:

We can use Chi-squared test. The observations are in Table 1.

On the other hand, if this is a Poisson distribution then the parameter should be $$ \begin{align*} \lambda &= \mu\\ & = {0\times8 + 1\times13 +\cdots + 6\times2 \over 8+13+\cdots+2}\\ & = {144\over 64}\\ &=2.25 \end{align*} $$ And the Poisson point probabilities are listed in Table 2.

And hence the expected numbers are listed in Table 3.

Note that we have merged some categories in order to get $E_i \geq 3$. The statistic is $$ \begin{align*} \chi^2 &= \sum{(O-E)^2\over E}\\ &= {(8-6.720)^2 \over 6.720} + \cdots + {(4-4.992)^2 \over 4.992}\\ &= 2.112048 \end{align*} $$ There are six categories and thus the degree of freedom is $6-1 = 5$. The significance probability is 0.8334339. R code:

prob = c(round(dpois(c(0:6), 2.25), 3),
+ 1 - round(sum(dpois(c(0:6), 2.25)), 3))
expect = prob * 64
prob; expect
# [1] 0.105 0.237 0.267 0.200 0.113 0.051 0.019 0.008
# [1] 6.720 15.168 17.088 12.800 7.232 3.264 1.216 0.512
O = c(8, 13, 18, 11, 10, 4)
E = c(expect[1:5], sum(expect[6:8]))
O; E
# [1] 8 13 18 11 10 4
# [1] 6.720 15.168 17.088 12.800 7.232 4.992
chisq = sum((O - E) ^ 2 / E)
1 - pchisq(chisq, 5)
# [1] 0.8334339

The hypothesis is $$H_0: \mbox{Poisson distribution},\ H_1: \mbox{Not Poisson distribution}$$ Since $p = 0.8334339 > 0.05$, so we accept $H_0$. That is, it is reasonable to claim that the number of goals per game is Poisson distributed.

Reference

  1. Ross, S. (2010). A First Course in Probability (8th Edition). Chapter 4. Pearson. ISBN: 978-0-13-603313-4.
  2. Brink, D. (2010). Essentials of Statistics: Exercises. Chapter 5 & 9. ISBN: 978-87-7681-409-0.

基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution的更多相关文章

  1. 基本概率分布Basic Concept of Probability Distributions 8: Normal Distribution

    PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...

  2. 基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution

    PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \al ...

  3. 基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution

    PDF version PDF & CDF The exponential probability density function (PDF) is $$f(x; \lambda) = \b ...

  4. 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution

    PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...

  5. 基本概率分布Basic Concept of Probability Distributions 3: Geometric Distribution

    PDF version PMF Suppose that independent trials, each having a probability $p$, $0 < p < 1$, o ...

  6. 基本概率分布Basic Concept of Probability Distributions 1: Binomial Distribution

    PDF下载链接 PMF If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$ ...

  7. 基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution

    PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...

  8. PRML Chapter 2. Probability Distributions

    PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...

  9. Common Probability Distributions

    Common Probability Distributions Probability Distribution A probability distribution describes the p ...

随机推荐

  1. 为easyui datagrid 添加上下方向键移动

    将以下脚本保存为 easyui-datagrid-moverow.js var DatagridMoveRow = (function($){ function DatagridMoveRow(gri ...

  2. 转一篇Unity的相机动画控制

    最近真是忙,连研究细看的时间都没有了,原帖地址:https://alastaira.wordpress.com/2013/11/08/smooth-unity-camera-transitions-w ...

  3. Competition-based User Expertise Score Estimation-20160520

    1.Information publication:sigir 2011 author:Jing Liu Harbin Institute of TechnologyMicrosoft Researc ...

  4. 安装win10

    1.百度win10,看到的大都是雨林木风,ghost等江湖杂牌非原版系统.百度”msdn,我告诉你“进入微软MSDN下载中心(原来还有这么个好地方,以后就从这里下了),下载链接是ed2k格式的链接(e ...

  5. iOS -- 隐藏返回按钮

    // 隐藏返回按钮 [self.navigationItem setHidesBackButton:YES];

  6. Ueditor 上传图片 如何设置只显示 本地上传

    我这个是自问自答,其实很简单.只要按照以下方式修改就可以了. 找到image.html 将以下代码 <div id="tabHeads" class="tabhea ...

  7. MyBatis学习--mybatis开发dao的方法

    简介 使用Mybatis开发Dao,通常有两个方法,即原始Dao开发方法和Mapper接口开发方法. 主要概念介绍: MyBatis中进行Dao开发时候有几个重要的类,它们是SqlSessionFac ...

  8. Ubuntu14.04下安装tomcat

    1.官方网站下载最新的tomcat:http://tomcat.apache.org/download-80.cgi在ubuntu上,我们下载zip和tar.gz.Ubuntu14.04安装和配置To ...

  9. python中的函数以及递归

    一  函数 函数的组成: def funname(parameters): instructions.... 在探讨函数的定义之前,让我们想想,如果我们写了上千行代码,其实各种变量定义,循环..... ...

  10. Docker指定multiple Insecure registry的方法

    Docker如果需要从非SSL源管理镜像,需要配置Docker配置文件的insecury-registry参数,一般在如下位置修改其配置文件: * /etc/sysconfig/docker * /e ...