PDF version

PMF

A discrete random variable $X$ is said to have a Poisson distribution with parameter $\lambda > 0$, if the probability mass function of $X$ is given by $$f(x; \lambda) = \Pr(X=x) = e^{-\lambda}{\lambda^x\over x!}$$ for $x=0, 1, 2, \cdots$.

Proof:

$$ \begin{align*} \sum_{x=0}^{\infty}f(x; \lambda) &= \sum_{x=0}^{\infty} e^{-\lambda}{\lambda^x\over x!}\\ & = e^{-\lambda}\sum_{x=0}^{\infty}{\lambda^x\over x!}\\ &= e^{-\lambda}\left(1 + \lambda + {\lambda^2 \over 2!}+ {\lambda^3\over 3!}+ \cdots\right)\\ & = e^{-\lambda} \cdot e^{\lambda}\\ & = 1 \end{align*} $$

Mean

The expected value is $$\mu = E[X] = \lambda$$

Proof:

$$ \begin{align*} E[X] &= \sum_{x=0}^{\infty}xe^{-\lambda}{\lambda^x\over x!}\\ & = \sum_{x=1}^{\infty}e^{-\lambda}{\lambda^x\over (x-1)!}\\ & =\lambda e^{-\lambda}\sum_{x=1}^{\infty}{\lambda^{x-1}\over (x-1)!}\\ & = \lambda e^{-\lambda}\left(1+\lambda + {\lambda^2\over 2!} + {\lambda^3\over 3!}+\cdots\right)\\ & = \lambda e^{-\lambda} e^{\lambda}\\ & = \lambda \end{align*} $$

Variance

The variance is $$\sigma^2 = \mbox{Var}(X) = \lambda$$

Proof:

$$ \begin{align*} E\left[X^2\right] &= \sum_{x=0}^{\infty}x^2e^{-\lambda}{\lambda^x\over x!}\\ &= \sum_{x=1}^{\infty}xe^{-\lambda}{\lambda^x\over (x-1)!}\\ &= \lambda\sum_{x=1}^{\infty}xe^{-\lambda}{\lambda^{x-1}\over (x-1)!}\\ & = \lambda\sum_{x=1}^{\infty}(x-1+1)e^{-\lambda}{\lambda^{x-1}\over (x-1)!}\\ &= \lambda\left(\sum_{x=1}^{\infty}(x-1)e^{-\lambda}{\lambda^{x-1}\over (x-1)!} + \sum_{x=1}^{\infty} e^{-\lambda}{\lambda^{x-1}\over (x-1)!}\right)\\ &= \lambda\left(\lambda\sum_{x=2}^{\infty}e^{-\lambda}{\lambda^{x-2}\over (x-2)!} + \sum_{x=1}^{\infty} e^{-\lambda}{\lambda^{x-1}\over (x-1)!}\right)\\ & = \lambda(\lambda+1) \end{align*} $$ Hence the variance is $$ \begin{align*} \mbox{Var}(X)& = E\left[X^2\right] - E[X]^2\\ & = \lambda(\lambda + 1) - \lambda^2\\ & = \lambda \end{align*} $$

Examples

1. Let $X$ be Poisson distributed with intensity $\lambda=10$. Determine the expected value $\mu$, the standard deviation $\sigma$, and the probability $P\left(|X-\mu| \geq 2\sigma\right)$. Compare with Chebyshev's Inequality.

Solution:

The Poisson distribution mass function is $$f(x) = e^{-\lambda}{\lambda^x\over x!},\ x=0, 1, 2, \cdots$$ The expected value is $$\mu= \lambda=10$$ Then the standard deviation is $$\sigma = \sqrt{\lambda} = 3.162278$$ The probability that $X$ takes a value more than two standard deviations from $\mu$ is $$ \begin{align*} P\left(|X-\lambda| \geq 2\sqrt{\lambda}\right) &= P\left(X \leq \lambda-2\sqrt{\lambda}\right) + P\left(X \geq \lambda + 2\sqrt{\lambda}\right)\\ & = P(X \leq 3) + P(X \geq 17)\\ & = 0.03737766 \end{align*} $$ R code:

sum(dpois(c(0:3), 10)) + 1 - sum(dpois(c(0:16), 10))
# [1] 0.03737766

Chebyshev's Inequality gives the weaker estimation $$P\left(|X - \mu| \geq 2\sigma\right) \leq {1\over2^2} = 0.25$$

2. In a certain shop, an average of ten customers enter per hour. What is the probability $P$ that at most eight customers enter during a given hour.

Solution:

Recall that the Poisson distribution mass function is $$P(X=x) = e^{-\lambda}{\lambda^x\over x!}$$ and $\lambda=10$. So we have $$ \begin{align*} P(X \leq 8) &= \sum_{x=0}^{8}e^{-10}{10^{x}\over x!}\\ &= 0.3328197 \end{align*} $$ R code:

sum(dpois(c(0:8), 10))
# [1] 0.3328197
ppois(8, 10)
# [1] 0.3328197

3. What is the probability $Q$ that at most 80 customers enter the shop from the previous problem during a day of 10 hours?

Solution:

The number $Y$ of customers during an entire day is the sum of ten independent Poisson distribution with parameter $\lambda=10$. $$Y = X_1 + \cdots + X_{10}$$ Thus $Y$ is also a Poisson distribution with parameter $\lambda = 100$. Thus we have $$ \begin{align*} P(Y \leq 80) &= \sum_{y=0}^{80}e^{-100}{100^{y}\over y!}\\ &= 0.02264918 \end{align*} $$ R code:

sum(dpois(c(0:80), 100))
# [1] 0.02264918
ppois(80, 100)
# [1] 0.02264918

Alternatively, we can use normal approximation (generally when $\lambda > 9$) with $\mu = \lambda = 100$ and $\sigma = \sqrt{\lambda}=10$. $$ \begin{align*} P(Y \leq 80) &= \Phi\left({80.5-100\over 10 }\right)\\ &= \Phi\left({-19.5\over10}\right)\\ &=0.02558806 \end{align*} $$ R code:

pnorm(-19.5/10)
# [1] 0.02558806

4. At the 2006 FIFA World Championship, a total of 64 games were played. The number of goals per game was distributed as follows: 8 games with 0 goals 13 games with 1 goal 18 games with 2 goals 11 games with 3 goals 10 games with 4 goals 2 games with 5 goals 2 games with 6 goals Determine whether the number of goals per game may be assumed to be Poisson distributed.

Solution:

We can use Chi-squared test. The observations are in Table 1.

On the other hand, if this is a Poisson distribution then the parameter should be $$ \begin{align*} \lambda &= \mu\\ & = {0\times8 + 1\times13 +\cdots + 6\times2 \over 8+13+\cdots+2}\\ & = {144\over 64}\\ &=2.25 \end{align*} $$ And the Poisson point probabilities are listed in Table 2.

And hence the expected numbers are listed in Table 3.

Note that we have merged some categories in order to get $E_i \geq 3$. The statistic is $$ \begin{align*} \chi^2 &= \sum{(O-E)^2\over E}\\ &= {(8-6.720)^2 \over 6.720} + \cdots + {(4-4.992)^2 \over 4.992}\\ &= 2.112048 \end{align*} $$ There are six categories and thus the degree of freedom is $6-1 = 5$. The significance probability is 0.8334339. R code:

prob = c(round(dpois(c(0:6), 2.25), 3),
+ 1 - round(sum(dpois(c(0:6), 2.25)), 3))
expect = prob * 64
prob; expect
# [1] 0.105 0.237 0.267 0.200 0.113 0.051 0.019 0.008
# [1] 6.720 15.168 17.088 12.800 7.232 3.264 1.216 0.512
O = c(8, 13, 18, 11, 10, 4)
E = c(expect[1:5], sum(expect[6:8]))
O; E
# [1] 8 13 18 11 10 4
# [1] 6.720 15.168 17.088 12.800 7.232 4.992
chisq = sum((O - E) ^ 2 / E)
1 - pchisq(chisq, 5)
# [1] 0.8334339

The hypothesis is $$H_0: \mbox{Poisson distribution},\ H_1: \mbox{Not Poisson distribution}$$ Since $p = 0.8334339 > 0.05$, so we accept $H_0$. That is, it is reasonable to claim that the number of goals per game is Poisson distributed.

Reference

  1. Ross, S. (2010). A First Course in Probability (8th Edition). Chapter 4. Pearson. ISBN: 978-0-13-603313-4.
  2. Brink, D. (2010). Essentials of Statistics: Exercises. Chapter 5 & 9. ISBN: 978-87-7681-409-0.

基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution的更多相关文章

  1. 基本概率分布Basic Concept of Probability Distributions 8: Normal Distribution

    PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...

  2. 基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution

    PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \al ...

  3. 基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution

    PDF version PDF & CDF The exponential probability density function (PDF) is $$f(x; \lambda) = \b ...

  4. 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution

    PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...

  5. 基本概率分布Basic Concept of Probability Distributions 3: Geometric Distribution

    PDF version PMF Suppose that independent trials, each having a probability $p$, $0 < p < 1$, o ...

  6. 基本概率分布Basic Concept of Probability Distributions 1: Binomial Distribution

    PDF下载链接 PMF If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$ ...

  7. 基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution

    PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...

  8. PRML Chapter 2. Probability Distributions

    PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...

  9. Common Probability Distributions

    Common Probability Distributions Probability Distribution A probability distribution describes the p ...

随机推荐

  1. express:webpack dev-server中如何将对后端的http请求转到https的后端服务器中?

    在上一篇文章(Webpack系列:在Webpack+Vue开发中如何调用tomcat的后端服务器的接口?)我们介绍了如何将对于webpack-dev-server的数据请求转发到后端服务器上,这在大部 ...

  2. Install Visual Studio For Mac Preview

    在Hack News上看到Visual Studio For Mac Preview的链接,上面有许多评论,纪录下尝鲜安装过程. 第一次尝试 VisualStudioforMacPreviewInst ...

  3. 安装包制作工具 SetupFactory使用1 详解

    2014-11-19 Setup Factory 是一个强大的安装程序制作工具.提供了安装制作向导界面,即使你对安装制作不了解,也可以生成专业性质的安装程序.可建立快捷方式,也可直接在 Windows ...

  4. 将某个Qt4项目升级到Qt5遇到的问题[转]

    该Qt4项目以前是使用Qt4.7.4 MSVC2008开发的,因为使用到了OWC10(Office Web Components),使用MSVC编译器的话无法正常升级到Qt4.8.x和Qt5,于是将编 ...

  5. Theano3.2-练习之数据集及目标函数介绍

    来自http://deeplearning.net/tutorial/gettingstarted.html#gettingstarted 一.下载 在后续的每个学习算法上,都需要下载对应的文档,如果 ...

  6. mysql找回密码

    1.打开任务管理器,关闭mysqld.exe 2.win+r运行cmd打开控制台,输入mysqld --skip-grant-tables启动服务器 3.win+r重新运行cmd打开控制台,输入mys ...

  7. 在nginx中配置如何防止直接用ip访问服务器web server及server_name特性讲解

    看了很多nginx的配置,好像都忽略了ip直接访问web的问题,不利于SEO优化,所以我们希望可以避免直接用IP访问网站,而是域名访问,具体怎么做呢,看下面. 官方文档中提供的方法: If you d ...

  8. Webpack配置示例和详细说明

    /* * 请使用最新版本nodejs * 默认配置,是按生产环境的要求设置,也就是使用 webpack -p 命令就可以生成正式上线版本. * 也可以使用 webpack -d -w 命令,生成用于开 ...

  9. Android复习笔记--架构与版本

    #Android架构: 1. Linux 内核层 Android 系统是基于Linux 2.6 内核的,这一层为Android 设备的各种硬件提供了底 层的驱动,如显示驱动.音频驱动.照相机驱动.蓝牙 ...

  10. MyBatis特殊字符转义

    使用mybatis的时候,特殊字符,例如<,>,<>,..... 需使用以下进行转义 < < 小于号 > > 大于号 & & 与 &am ...