只支持直线段的多段线检查,因为主要用了初中的知识,一元一次方程求交点,详细的说就是,把多段线上相邻的两个点构成一条直线段,然后每条直线段与剩余的直线段求交点,一条直线段就代表一个一元一次方程,知道两点就知道这个方程是什么样的。
求出交点之后得判断这个点是否是多段线上本身的点,判断方法是判断求出来的交点与构成交点的两条直线段的4个点做比较,如果点的误差在1e-4之内,就认为这个交点是在多段线的端点上,不作为要求的交点。
除了这种可能之外,所求交点有可能是在直线段的延长线上,通过观察可以知道,如果交点在任意一条直线段两个端点之间,则可以知道这个交点到这条直线段两个端点的距离都要小于这个直线段两个端点的距离,如果交点到两个端点的距离大于了两个端点的距离,则说明这个交点是在线段的延长线上,也不作为要求的交点。
还需要注意的地方是,要考虑直线段垂直于x轴的情况,因为要求直线方程时的斜率时,分母不能为0,需要把直线垂直于x轴的情况单独考虑。

除了这种思路外,还可以直接使用intersectwith函数来做,相交类型是都不延长,(不知是直接炸开这个多段线好,还是分割这个多段线好)。总之首先得得到两个端点之间的线段。这样作,不仅支持直线段的多段线,还支持带凸度的,带圆弧的多段线了。
下面放出使用到的函数:

static    bool IsEqual(const AcGePoint2d & firstPoint, const AcGePoint2d & secondPoint, double tol)
{
return (fabs(firstPoint.x - secondPoint.x) < tol&&
fabs(firstPoint.y - secondPoint.y) < tol);
}
struct StLine
{
AcGePoint2d ptPre; AcGePoint2d ptNext; };
static bool JiaoDian(StLine &l1, StLine &l2, AcGePoint3d& ptCenter) {

        double x0, y0, x1, y1, x2, y2, x3, y3;

        x0 = l1.ptPre.x;
y0 = l1.ptPre.y; x1 = l1.ptNext.x;
y1 = l1.ptNext.y; x2= l2.ptPre.x;
y2 = l2.ptPre.y; x3 = l2.ptNext.x;
y3 = l2.ptNext.y; if (x0 - x1 == ) {
if (x2 - x3 == )
{
if (IsEqual(l1.ptPre, l2.ptPre, 1e-) ||
IsEqual(l1.ptPre, l2.ptNext, 1e-) ||
IsEqual(l1.ptNext, l2.ptPre, 1e-) ||
IsEqual(l1.ptNext, l2.ptNext, 1e-)) { acutPrintf(L"存在重叠的部分\n");
return false;
}
else {
acutPrintf(L"存在平行的部分\n");
return false; }
}
else { double k2 = (y3 - y2) / (x3 - x2); double b2 = (y2 - k2*x2); AcGePoint2d jd; jd.x = x0;
jd.y = k2*x0 + b2; double distance = l1.ptPre.distanceTo(l1.ptNext);
double dis1 = jd.distanceTo(l1.ptPre);
double dis2 = jd.distanceTo(l1.ptNext); if (dis1 < distance&&dis2 < distance) { if (IsEqual(l1.ptPre, jd, 1e-) ||
IsEqual(jd, l2.ptNext, 1e-) ||
IsEqual(l1.ptNext, jd, 1e-) ||
IsEqual(jd, l2.ptPre, 1e-)) { return false;
} ptCenter.x = jd.x;
ptCenter.y = jd.y;
ptCenter.z = ; return true; }
else {
return false;
}
}
}
else if (x3 - x2 == ) {
if (x0 - x1 != )
{
double k2 = (y1 - y0) / (x1 - x0); double b2 = (y1 - k2*x1); AcGePoint2d jd; jd.x = x3;
jd.y = k2*x3 + b2; double distance = l1.ptPre.distanceTo(l1.ptNext);
double dis1 = jd.distanceTo(l1.ptPre);
double dis2 = jd.distanceTo(l1.ptNext); if (dis1 < distance&&dis2 < distance) { if (IsEqual(l1.ptPre, jd, 1e-) ||
IsEqual(jd, l2.ptNext, 1e-) ||
IsEqual(l1.ptNext, jd, 1e-) ||
IsEqual(jd, l2.ptPre, 1e-)) { return false;
} ptCenter.x = jd.x;
ptCenter.y = jd.y;
ptCenter.z = ; return true; }
//交点在延长线上
else {
return false;
} }
else {
if (IsEqual(l1.ptPre, l2.ptPre, 1e-) ||
IsEqual(l1.ptPre, l2.ptNext, 1e-) ||
IsEqual(l1.ptNext, l2.ptPre, 1e-) ||
IsEqual(l1.ptNext, l2.ptNext, 1e-)) { acutPrintf(L"存在重叠的部分\n");
return false;
}
else {
acutPrintf(L"存在平行的部分\n");
return false;
}
}
}
else { double k1 = (y1 - y0) / (x1 - x0); double b1 = (y1 - k1*x1); double k2 = (y3 - y2) / (x3 - x2); double b2 = (y2 - k2*x2); AcGePoint2d jd; if (k1 == k2) {
return false;
} double x0 = (b2 - b1) / (k1 - k2);
jd.x = x0; jd.y = k1*x0 + b1; double distance = l1.ptPre.distanceTo(l1.ptNext);
double dis1 = jd.distanceTo(l1.ptPre);
double dis2 = jd.distanceTo(l1.ptNext); if (dis1 < distance&&dis2 < distance) { if (IsEqual(l1.ptPre, jd, 1e-) ||
IsEqual(jd, l2.ptNext, 1e-) ||
IsEqual(l1.ptNext, jd, 1e-) ||
IsEqual(jd, l2.ptPre, 1e-)) { return false;
}
ptCenter.x = jd.x;
ptCenter.y = jd.y;
ptCenter.z = ; return true;
}
else {
return false;
}
}
}

objectarx 多段线自交检查的更多相关文章

  1. Objectarx 相交矩形求并集 面域转多段线

    测试结果: 主要思路:拾取一个点作为矩形的插入点,分别以该点进行两次jig操作,就能得到白色的两个相交的polyline,之后需要变成红色的封闭多段线.做法就是:求出两个白色矩形的面域,然后通过boo ...

  2. objectarx 按比例分割封闭多段线

    测试结果:这个是按0.1,0.1,0.1,0.3,0.4的比例划分的. 插件描述:这个插件主要是选择一个多段线poly,设置poly的close属性为true,在poly任意一侧画一条长线line(l ...

  3. Java 直线、多段线画板 PaintJFrame (整理)

    package demo; import java.awt.BorderLayout; import java.awt.Color; import java.awt.FlowLayout; impor ...

  4. Cesium实现文字、点、多段线、多边形的实时绘制

    背景知识 点.线.面以及文字的实时绘制是GIS很重要的一个功能,是用户对感兴趣区域标注的业务需要.同时Cesium提供了点.线(多段线).面及文字(label)绘制的接口,绘制方式总共有两种,一种是通 ...

  5. 4、c++ Arx二次开发创建多段线

    一.本节课程 c++ Arx二次开发创建多段线 二.本节要讲解的知识点 如何应用C++ ARX二次开发创建多段线(AcDbPolyline.AcDb2dPolyLine.AcDb3dPolyline的 ...

  6. CAD交互绘制多段线(网页版)

    多段线又被称为多义线,表示一起画的都是连在一起的一个复合对象,可以是直线也可以是圆弧并且它们还可以加不同的宽度. 主要用到函数说明: _DMxDrawX::DrawLine 绘制一个直线.详细说明如下 ...

  7. CAD交互绘制多段线(com接口)

    多段线又被称为多义线,表示一起画的都是连在一起的一个复合对象,可以是直线也可以是圆弧并且它们还可以加不同的宽度. 主要用到函数说明: _DMxDrawX::DrawLine 绘制一个直线.详细说明如下 ...

  8. CAD参数绘制多段线(com接口)

    多段线又被称为多义线,表示一起画的都是连在一起的一个复合对象,可以是直线也可以是圆弧并且它们还可以加不同的宽度. 主要用到函数说明: _DMxDrawX::PathLineTo 把路径下一个点移到指定 ...

  9. CAD参数绘制多段线(网页版)

    多段线又被称为多义线,表示一起画的都是连在一起的一个复合对象,可以是直线也可以是圆弧并且它们还可以加不同的宽度. 主要用到函数说明: _DMxDrawX::PathLineTo 把路径下一个点移到指定 ...

随机推荐

  1. 关于revit的外部扩展存储

    最近被revit的外部扩展存储搞得死去活来,作为日后再次使用的预防针,此处随手留下印记,以作警示. 首先我们知道外部扩展存储ExtensibleStorage是revit提供给revit二次开发人员用 ...

  2. mongodb学习(二)——基本的数据操作

    数据操作(重点) 数据库的核心--CRUD,增加和删除较为简单,查询和修改较复杂 查询 关系运算符 $gt 大于 $lt 小于 $gte 大于等于 $lte 小于等于 $eq | (key: valu ...

  3. kubernetes concepts (一)

    Concepts The Concepts section helps you learn about the parts of the Kubernetes system and the abstr ...

  4. 关于pycharm中输出的内容不全的解决办法

    很多时候我们会发现有的时候输出的结果特别多的时候,会在最后输出时用...代替,最后输出一个总长度,那要咋么弄咧? import pandas as pd # 设置显示的最大列.宽等参数,消掉打印不完全 ...

  5. 手把手写一个基于Spring Boot框架下的参数校验组件(JSR-303)

    前言 之前参与的新开放平台研发的过程中,由于不同的接口需要对不同的入参进行校验,这就涉及到通用参数的校验封装,如果不进行封装,那么写出来的校验代码将会风格不统一.校验工具类不一致.维护风险高等其它因素 ...

  6. 博客与微信小程序的同步

    在此之前,先说说自己最近的打算,才购买了阿里云的服务器,想做一个网站和图床网盘之类的方便自己使用. 考虑到小程序,又打算将自己的博客内容放到小程序中.从零开发实属困难,应该还要一段时间才能完成. 目前 ...

  7. Ubuntu下makefile的简单使用

    在Windows下,只需要简单的点击以下make,rebuild即可.而在Linux下,这样的IDE环境并没有提供,难道必须每一步都执行一遍吗?比较ok的做法自然是能够利用批处理脚本来进行操作了,这样 ...

  8. 异想家IDEA的偏好配置

    最好将配置文件位置改为软件安装目录下,因为只有自己用,易于便携. 修改bin目录下的idea.properties,注释#去掉修改idea.config.path.idea.system.path配置 ...

  9. Springboot整合Redis入门完整篇,零基础入门教学教程

    记录一次简易集成Redis缓存 自定义Redisconfig配置 自定义序列化操作 加深印像 整合前提工具环境准备: 1.redis官网 https://redis.io/download 下载安装r ...

  10. [校内训练19_09_02]A

    题意 给出N 个形如$f_i(x) = a_i x^2 + b_i x $的二次函数. 有Q 次询问,每次给出一个x,询问$max{\{f_i(x)\}}$.$N,Q \leq 5*10^5$. 思考 ...