CodeForces 1096D(线性dp)
•题意
给出一个长度为n的字符串s,对于每个$s_{i}$有$a_{i}$的价值
让你删除最小的价值,使得字符串中不存在$hard$这个子序列
•思路
设dp[1]是不存在以$h$为前缀的最小代价
dp[2]是不存在以$ha$为前缀,也就是不存在$h$或者不存在$a$或者不存在$ha$的最小代价
同理,dp[3]是不存在以$har$为前缀的最小代价,dp[4]是不存在以$hard$为前缀的最小代价
dp[i]可以有dp[i-1]转移来,$dp[i]=min(dp[i]+a,dp[i-1])$
•代码
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn=1e5+;
char s[maxn];
ll dp[];
int main()
{
int n;
cin>>n;
scanf("%s",s+);
for(int i=;i<=n;i++)
{
ll x;
cin>>x;
if(s[i]=='h')
dp[]+=x;
else if(s[i]=='a')
dp[]=min(dp[]+x,dp[]);
else if(s[i]=='r')
dp[]=min(dp[]+x,dp[]);
else if(s[i]=='d')
dp[]=min(dp[]+x,dp[]);
}
cout<<dp[]<<endl;
}
CodeForces 1096D(线性dp)的更多相关文章
- Codeforces 176B (线性DP+字符串)
题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...
- CodeForces - 1051D (线性DP)
题目:https://codeforces.com/problemset/problem/1051/D 题意:一个2行n列的矩形,上面有黑白块,然后问你怎么布置才能有k个连通块,问有多少种方案数 思路 ...
- CodeForces - 1038D (线性DP)
题目:https://codeforces.com/problemset/problem/1038/D 题意:给你n个数字,每个数字可以吃左右两边的数,然后吃完后自己变成 a[i]-a[i+1]或者a ...
- [CodeForces - 1272D] Remove One Element 【线性dp】
[CodeForces - 1272D] Remove One Element [线性dp] 标签:题解 codeforces题解 dp 线性dp 题目描述 Time limit 2000 ms Me ...
- [线性DP][codeforces-1110D.Jongmah]一道花里胡哨的DP题
题目来源: Codeforces - 1110D 题意:你有n张牌(1,2,3,...,m)你要尽可能多的打出[x,x+1,x+2] 或者[x,x,x]的牌型,问最多能打出多少种牌 思路: 1.三组[ ...
- LightOJ1044 Palindrome Partitioning(区间DP+线性DP)
问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...
- hdu1712 线性dp
//Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...
- 动态规划——线性dp
我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...
- POJ 2479-Maximum sum(线性dp)
Maximum sum Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 33918 Accepted: 10504 Des ...
- poj 1050 To the Max(线性dp)
题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...
随机推荐
- Linux下配置 Keepalived(心跳检测部署)
首先呢,我想先给大家简单介绍一下什么是keepalived: Keepalived的作用是检测服务器的状态,如果有一台web服务器死机,或工作出现故障,Keepalived将检测到,并将有故障的服务器 ...
- Myeclipse运行提示错误: 找不到或无法加载主类 test.test1 终极解决办法
前提是代码没有问题 简单粗暴的解决办法: 重启电脑 解决办法2: 1.在控制台中点开“Problems”,查看里面的错误.如果是多个项目,可以将其他项目暂时关闭. 根据错误进行处理. 2.把项目cle ...
- 洛谷P3286 [SCOI2014]方伯伯的商场之旅
题目:洛谷P3286 [SCOI2014]方伯伯的商场之旅 思路 数位DP dalao说这是数位dp水题,果然是我太菜了... 自己是不可能想出来的.这道题在讲课时作为例题,大概听懂了思路,简单复述一 ...
- SDUT-2054_数据结构实验之链表九:双向链表
数据结构实验之链表九:双向链表 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 学会了单向链表,我们又多了一种解决问题的 ...
- 屏蔽指定地区IP访问
<?php if ($HTTP_SERVER_VARS["HTTP_X_FORWARDED_FOR"]) { $ip = $HTTP_SERVER_VARS["HT ...
- iptables 累计(Accounting)
对於每一条规则,核心各自设置两个专属的计数器,用于累计符合该条件的封包数,以及这些封包的总位元组数.这两项资讯可用於统计网路用量. 举例来說,假设有一台Internet闸道器路,eth0接内部网络,e ...
- iptables禁止QQ端口
#iptables -D FORWARD -p udp --dport 8000 -j REJECT
- [转]来自后端的逆袭 blazor简介 全栈的福音
背景 什么是SPA 什么是MPA MPA (Multi-page Application) 多页面应用指的就是最传统的 HTML 网页设计,早期的网站都是这样的设计,所之称为「网页设计」.使用 MPA ...
- [转]爬虫 selenium + phantomjs / chrome
目录 selenium 模块 安装 phantomjs 浏览器 安装 chromedriver 接口 安装 对比两个接口 整合使用 基本实例 常用属性方法 定位节点 节点操作 其他操作 实例解析 - ...
- [转]解决pip安装太慢的问题
阅读目录 临时使用: 经常在使用Python的时候需要安装各种模块,而pip是很强大的模块安装工具,但是由于国外官方pypi经常被墙,导致不可用,所以我们最好是将自己使用的pip源更换一下,这样就能解 ...