传送门

•题意

给出一个长度为n的字符串s,对于每个$s_{i}$有$a_{i}$的价值

让你删除最小的价值,使得字符串中不存在$hard$这个子序列

•思路

设dp[1]是不存在以$h$为前缀的最小代价

dp[2]是不存在以$ha$为前缀,也就是不存在$h$或者不存在$a$或者不存在$ha$的最小代价

同理,dp[3]是不存在以$har$为前缀的最小代价,dp[4]是不存在以$hard$为前缀的最小代价

dp[i]可以有dp[i-1]转移来,$dp[i]=min(dp[i]+a,dp[i-1])$

•代码

 #include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn=1e5+;
char s[maxn];
ll dp[];
int main()
{
int n;
cin>>n;
scanf("%s",s+);
for(int i=;i<=n;i++)
{
ll x;
cin>>x;
if(s[i]=='h')
dp[]+=x;
else if(s[i]=='a')
dp[]=min(dp[]+x,dp[]);
else if(s[i]=='r')
dp[]=min(dp[]+x,dp[]);
else if(s[i]=='d')
dp[]=min(dp[]+x,dp[]);
}
cout<<dp[]<<endl;
}

CodeForces 1096D(线性dp)的更多相关文章

  1. Codeforces 176B (线性DP+字符串)

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...

  2. CodeForces - 1051D (线性DP)

    题目:https://codeforces.com/problemset/problem/1051/D 题意:一个2行n列的矩形,上面有黑白块,然后问你怎么布置才能有k个连通块,问有多少种方案数 思路 ...

  3. CodeForces - 1038D (线性DP)

    题目:https://codeforces.com/problemset/problem/1038/D 题意:给你n个数字,每个数字可以吃左右两边的数,然后吃完后自己变成 a[i]-a[i+1]或者a ...

  4. [CodeForces - 1272D] Remove One Element 【线性dp】

    [CodeForces - 1272D] Remove One Element [线性dp] 标签:题解 codeforces题解 dp 线性dp 题目描述 Time limit 2000 ms Me ...

  5. [线性DP][codeforces-1110D.Jongmah]一道花里胡哨的DP题

    题目来源: Codeforces - 1110D 题意:你有n张牌(1,2,3,...,m)你要尽可能多的打出[x,x+1,x+2] 或者[x,x,x]的牌型,问最多能打出多少种牌 思路: 1.三组[ ...

  6. LightOJ1044 Palindrome Partitioning(区间DP+线性DP)

    问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...

  7. hdu1712 线性dp

    //Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...

  8. 动态规划——线性dp

    我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...

  9. POJ 2479-Maximum sum(线性dp)

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33918   Accepted: 10504 Des ...

  10. poj 1050 To the Max(线性dp)

    题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...

随机推荐

  1. SQLAlchemy中filter和filer_by的区别

    filter: session.query(MyClass).filter(MyClass.name == 'some name') filter_by: session.query(MyClass) ...

  2. MUI - myStorage在ios safari无痕浏览模式下的解决方案

    myStorage在ios safari无痕浏览模式下的解决方案 今天看到了这个帖子LocalStorage 在 Private Browsing 下的一个限制, 吓尿了,如果用户开启了无痕浏览,ap ...

  3. 两种最常用的 HTTP 方法:GET 和 POST。

    什么是 HTTP? 超文本传输协议(HTTP)的设计目的是保证客户机与服务器之间的通信. HTTP 的工作方式是客户机与服务器之间的请求-应答协议. web 浏览器可能是客户端,而计算机上的网络应用程 ...

  4. 《C程序设计语言》笔记(一)

    一:导言 1:printf中的格式化字符串: %ld                    按照long整型打印 %6d                   按照十进制整数打印,至少6个字符宽,不够的 ...

  5. Java练习 SDUT-1230_平方和与立方和

    平方和与立方和 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 给定一段连续的整数,求出他们中所有偶数的平方和以及所有奇 ...

  6. 02docker简单使用和配置(网络、存储和Hub)

    四:网络 1:命名容器 在各种docker命令中,可以通过名字中找到对应的容器.之前创建的容器都是由docker自动命名的,可以在docker  run中,通过--name参数指定容器的名字.比如: ...

  7. header发送Cookie

    Cookie传达给客户端的原理 平时执行setcookie('key1', 'value1');这样的代码时,浏览器就会收到cookie并保存,但我们并不能从echo出去的内容中看到cookie内容 ...

  8. Mysql 查询一天中每半小时记录的数量

    SELECT HOUR(e.time)as Hour,FLOOR(MINUTE(e.time)/30) as M, COUNT(*) as Count FROM error_log e WHERE e ...

  9. 2019-6-5-VisualStudio-开启仅我代码调试

    title author date CreateTime categories VisualStudio 开启仅我代码调试 lindexi 2019-06-05 19:29:44 +0800 2019 ...

  10. Android Studio(七):项目从Eclipse到Android Studio迁移

    Android Studio相关博客: Android Studio(一):介绍.安装.配置 Android Studio(二):快捷键设置.插件安装 Android Studio(三):设置Andr ...