题目描述

牛牛最近迷上了一种叫斗地主的扑克游戏。斗地主是一种使用黑桃、红心、梅花、方片的 $ A $ 到 $ K $ 加上大小王的共 $ 54 $ 张牌来进行的扑克牌游戏。在斗地主中,牌的大小关系根据牌的数码表示如下:$ 3 < 4 < 5 < 6 < 7 < 8 < 9 < 1 0 < J < Q < K < A < 2 < $ 小王 $ < $ 大王,而花色并不对牌的大小产生影响。每一局游戏中,一副手牌由 $ n $ 张牌组成。游戏者每次可以根据规定的牌型进行出牌,首先打光自己的手牌一方取得游戏的胜利。

现在,牛牛只想知道,对于自己的若干组手牌,分别最少需要多少次出牌可以将它们打光。

需要注意的是,本题中游戏者每次可以出手的牌型与一般的斗地主相似而略有不同。具体规则如下:

另外,在顺牌(单顺子、双顺子、三顺子)中,牌的花色不要求相同。

输入格式

第一行包含用空格隔开的 $ 2 $ 个正整数 $ T \(,\) N $,表示手牌的组数以及每组手牌的张数。

接下来 $ T $ 组数据,每组数据 $ N $ 行,每行一个非负整数对 $ A_i, B_i $,表示一张牌,其中 $ A_i $ 表示牌的数码,$ B_i $ 表示牌的花色,中间用空格隔开。特别的,我们用 $ 1 $ 来表示数码 $ A \(,\) 11 $ 表示数码 $ J \(,\) 12 $ 表示数码 $ Q \(,\) 13 $ 表示数码 $ K $;黑桃、红心、梅花、方片分别用 $ 1 - 4 $ 来表示;小王的表示方法为 0 1 ,大王的表示方法为 0 2

输出格式

共 $ T $ 行,每行一个整数,表示打光第 $ i $ 组手牌的最少次数。

样例

样例输入 1

1 8
7 4
8 4
9 1
10 4
11 1
5 1
1 4
1 1

样例输出 1

3

样例输入 2

1 17
12 3
4 3
2 3
5 4
10 2
3 3
12 2
0 1
1 3
10 1
6 2
12 1
11 3
5 2
12 4
2 2
7 2

样例输出 2

6

数据范围与提示

题解

看到这么小的数据范围,应该一眼就能想到状压DP搜索。

的确,这是一道非常裸的搜索题。

直接暴力搜索即可。

哇我这么快就切了一道蓝题

这样想你就太天真了。

提交后发现,这样做只会得到\(30\)分。

为什么呢?让我们分析一下原因:

  1. 我们每一次都枚举了所有可行的状态,冗余状态太多。

  2. 会搜一些对题目答案没有任何影响的状态。

    ……

其实这样的根本原因就是:没有一个搜索的顺序

按照正常的打牌者的角度去思考,你会发现:我们每一次都是先出顺子,在考虑带牌,最后才是单牌/炸弹/对子

我们这样去搜索就可以\(\mathrm{AC}\)。

但是,你还会发现一个新问题:如果拆牌打所需次数更少呢?

可以看到最后一句话:数据保证:所有的手牌都是随机生成的。

而我们在打牌时很少会有拆牌方案更好的情况。

那么出现这个问题的几率就微乎其微了。

这个题的数据经过了特殊构造,可以卡掉没有考虑拆牌方案的做法。

代码

我太懒了,没有考虑拆牌的情况QwQ

/********************************
Author: csxsl
Date: 2019/10/28
Language: C++
Problem: P2668
********************************/
#include <bits/stdc++.h>
#define itn int
#define gI gi using namespace std; inline int gi()
{
int f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return f * x;
} inline long long gl()
{
long long f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return f * x;
} int t, n, a[25], ans; void dfs(int now)//搜索主过程
{
if (now >= ans) return;//最优性剪枝
//先考虑单顺子
int ps = 0;//顺子的对数
for (int i = 3; i <= 14; i+=1)//枚举从3~A
{
if (a[i] < 1) ps = 0;//没有牌了,顺子断了
else
{
++ps;//牌数+1
if (ps >= 5)//对数>=5,可以直接出了
{
for (int j = i; j >= i - ps + 1; j-=1) --a[j];//出牌
dfs(now + 1);//递归下一步
for (int j = i; j >= i - ps + 1; j-=1) ++a[j];//回溯时加上牌的张数
}
}
}
//双顺子
ps = 0;//记得清零对数
for (int i = 3; i <= 14; i+=1)//枚举3~A
{
if (a[i] < 2) ps = 0;//牌数<=1,顺子断了
else
{
++ps;//对数+1
if (ps >= 3)//对数>=3,可以出牌了
{
for (int j = i; j >= i - ps + 1; j-=1) a[j] -= 2;//出牌
dfs(now + 1);//递归下一步
for (int j = i; j >= i - ps + 1; j-=1) a[j] += 2;//进行回溯,加上那个原来的牌数
}
}
}
//三顺子
ps = 0;//清零对数
for (int i = 3; i <= 14; i+=1)//枚举3~A
{
if (a[i] < 3) ps = 0;//牌数不够3张,顺子断了
else
{
++ps;//对数+1
if (ps >= 2)//对数>=2,可以出牌了
{
for (int j = i; j >= i - ps + 1; j-=1) a[j] -= 3;//打出三顺子
dfs(now + 1);//递归下一步
for (int j = i; j >= i - ps + 1; j-=1) a[j] += 3;//回溯时加上打出的牌数
}
}
} //考虑带牌的情况
for (int i = 2; i <= 14; i+=1)//枚举2~A,因为2也可以进行带牌
{
if (a[i] == 3)//正好有3张牌
{
//三带一
a[i] -= 3; for (int j = 2; j <= 15; j+=1)//枚举2~大小王
{
if (j == i || a[j] <= 0) continue;//带的牌和那三张牌一样或者没有这张牌就直接枚举下一张牌
--a[j];//出牌
dfs(now + 1);//递归下一步
++a[j];//回溯
} //三带二
for (int j = 2; j <= 14; j+=1)//枚举2~A
{
if (j == i || a[j] <= 1) continue;//跳过这张牌,与三带一的情况同理
a[j] -= 2;//打出三代二
dfs(now + 1);//递归进行下一步
a[j] += 2;//回溯时加上带的对子
} a[i] += 3;//回溯加上三张牌
}
else //可以选择三带一、三带二或四带二
{
a[i] -= 3; //三带一与上面情况相同
for (int j = 2; j <= 15; j+=1)
{
if (j == i || a[j] <= 0) continue;
--a[j];
dfs(now + 1);
++a[j];
} //三带二同理
for (int j = 2; j <= 14; j+=1)
{
if (j == i || a[j] <= 1) continue;
a[j] -= 2;
dfs(now + 1);
a[j] += 2;
}
a[i] += 3; //四带二
a[i] -= 4; //带两张单牌
for (int j = 2; j <= 15; j+=1)//先从 2~大小王 枚举第一张单牌
{
if (j == i || a[j] <= 0) continue;//不能出
--a[j];//先出一张
for (int k = 2; k <= 15; k+=1)//枚举第二张单牌
{
if (a[k] <= 0 || j == k) continue;//不能和第一张单牌一样
--a[k];//再出一张
dfs(now + 1);//下一步
++a[k];//回溯
}
++a[j];//那会那一张牌
} //带两对对子
for (int j = 2; j <= 14; j+=1)//枚举第一对
{
if (j == i || a[j] <= 1) continue;
a[j] -= 2;
for (int k = 2; k <= 14; k+=1)//枚举第二对
{
if (j == k || a[k] <= 1) continue;
a[k] -= 2;
dfs(now + 1);
a[k] += 2;
}
a[j] += 2;
} a[i] += 4;//加上出的4张牌
}
} //单牌/炸弹/对子 最后考虑,因为它们都可以一次出完
for (int i = 2; i <= 15; i+=1) if (a[i]) ++now;
ans = min(ans, now);//更新答案
return;//返回
} int main()
{
t = gi(), n = gI();
while (t--)
{
ans = 0x7fffffff;
memset(a, 0, sizeof(a));
//多组数据,一定记得初始化!!!
for (itn i = 1; i <= n; i+=1)
{
int x = gi(), y = gi();
if (x == 0) ++a[15];//大小王
else if (x == 1) ++a[14];//A比K大,故位置为14
else ++a[x];//统计每张牌出现的次数
}
dfs(0);//进行搜索
printf("%d\n", ans);//输出答案
}
return 0;
}

可以发现,我们每次输入的花色并没有任何用处。

因此,题目中输入的数据/给出的条件,并不一定都是有用的

题解【洛谷P2668】[NOIP2015]斗地主的更多相关文章

  1. 洛谷P2668 斗地主==codevs 4610 斗地主[NOIP 2015 day1 T3]

    P2668 斗地主 326通过 2.6K提交 题目提供者洛谷OnlineJudge 标签搜索/枚举NOIp提高组2015 难度提高+/省选- 提交该题 讨论 题解 记录 最新讨论 出现未知错误是说梗啊 ...

  2. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  3. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  4. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  5. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  6. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

  7. 题解-洛谷P4859 已经没有什么好害怕的了

    洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...

  8. 题解-洛谷P5217 贫穷

    洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...

  9. 题解 洛谷 P2010 【回文日期】

    By:Soroak 洛谷博客 知识点:模拟+暴力枚举 思路:题目中有提到闰年然后很多人就认为,闰年是需要判断的其实,含有2月29号的回文串,前四位是一个闰年那么我们就可以直接进行暴力枚举 一些小细节: ...

  10. 题解 洛谷P2158 【[SDOI2008]仪仗队】

    本文搬自本人洛谷博客 题目 本文进行了一定的更新 优化了 Markdown 中 Latex 语句的运用,加强了可读性 补充了"我们仍不曾知晓得 消失的 性质5 ",加强了推导的严谨 ...

随机推荐

  1. linux基础之IO模型

    一.IO模型 一次read操作: (1)等待数据准备好:从磁盘到内核内存 (2)从内核内存复制到进程内存 示意图如下: I/O类型: 同步和异步:synchronous,asynchronous 关注 ...

  2. UVA1601-双向广度优先搜索

    #include <iostream> #include <cstdio> #include <queue> #include <cstring> us ...

  3. 使用Python爬虫整理小说网资源-自学

    第一次接触python,原本C语言的习惯使得我还不是很适应python的语法风格.希望读者能够给出建议. 相关的入门指导来自以下的网址:https://blog.csdn.net/c406495762 ...

  4. net core+Redis+IIS+nginx实现Session共享

    .Net Core Web Api实践(二).net core+Redis+IIS+nginx实现Session共享   前言:虽说公司app后端使用的是.net core+Redis+docker+ ...

  5. LeetCode 728. 自除数

    题目链接:https://leetcode-cn.com/problems/self-dividing-numbers/ 给定上边界和下边界数字,输出一个列表,列表的元素是边界(含边界)内所有的自除数 ...

  6. PAT (Advanced Level) Practice 1028 List Sorting (25 分) (自定义排序)

    Excel can sort records according to any column. Now you are supposed to imitate this function. Input ...

  7. pycharm+anaconda在Mac上的配置方法 2019.11.29

    内心os: 听人说,写blog是加分项,那他就不是浪费时间的事儿了呗 毕竟自己菜还是留下来东西来自己欣赏吧 Mac小电脑上进行python数据开发环境的配置 首先下载Anaconda,一个超好用的数据 ...

  8. C语言库函数strstr、strch比较

    该库函数包含在<string.h>头文件中,函数原型:extern char *strstr(char *str1, const char *str2);使用方法 char *strstr ...

  9. JavaScript 继承 -JavaScript高级程序设计

    oo(Object Oriented)面向对象 许多oo语言都支持两种继承方式:接口继承和实现继承.接口继承只继承方法签名,而实现继承则继承实际的方法.函数没有签名,在ecmascript中无法实现接 ...

  10. CVE-2019-9081:laravel框架序列化RCE复现分析

    这里贴上两篇大佬的分析的帖子 本人习惯把平常的一些笔记或者好的帖子记录在自己的博客当中,便于之后遇到同样的漏洞时快速打开思路 1.https://xz.aliyun.com/t/5510#toc-8 ...