@(Python机器学习及实践-----从零开始通往Kaggle竞赛之路)

第二章 2.3章末小结

1

机器学习模型按照使用的数据类型,可分为监督学习和无监督学习两大类。

  1. 监督学习主要包括分类和回归的模型。
  • 分类:线性分类,支持向量机(SVM),朴素贝叶斯,k近邻,决策树,集成模型(随机森林(多个决策树)等)。
  • 回归:线性回归,支持向量机(SVM),k近邻,回归树,集成模型(随机森林(多个决策树)等)。
  1. 无监督学习主要包括:数据聚类(k-means)和数据降维(主成分分析)等等。

分类模型

线性:假设特征与分类结果存在线性关系,使用sigmoid函数映射到0~1,适合处理具有线性关系的数据。
在科学研究与工程实践中可把线性分类器的表现作为基准。lr使用精确解析,SGD使用随机梯度上升估计模型参数,耗时短,准确率略低

  • 评价指标:准确性,召回率,精准率,和后二者混合的F1指标

支持向量机:精妙的模型假设,线性假设,只用考虑两个空间间隔最小的两个不同类别的数据点。可以在高维数据中选择最为有效的少数训练样本。这样不仅节省了模型学习所需要的内存,而且也提高了模型的预测性能,但付出了计算资源和时间的代价。

  • 评价指标:同上,在回归中有R^2^,MS(平方)E,MA(绝对)E。

朴素贝叶斯 (naive bayes )基于贝叶斯理论。前提:各个维度上的特征被分类的条件概率之间互相独立。

  • 缺点:由于模型的强假设,需要估计的参数规模从幂指数量级到线性数量级减少,极大节约了内存消耗和计算时间。但是对特征关联性较强的任务上表现不佳。
  • 评价指标:同线性

k近邻:不需要参数训练,其属于无参数模型。非常高的计算复杂度(平方级)和内存消耗。

决策树:推断逻辑直观,有清晰的可解释性,也方便模型的可视化,易描述非线性关系。模型在学习的时候,需要考虑特征节点的选取顺序。
常用的度量方式包括信息熵和基尼不纯性。并不懂。。

集成模型: 有代表性的随机森林,同时搭建多个决策树模型,开始投票。
决策树可以随机选取特征构建节点(随机森林),或者按次序搭建分类模型(梯度提升决策树GTB)
特点:训练耗费时间,但是往往有更好的表现性能和稳定性。

我看分类这边都在用线性的度量指标。

回归模型

只是评估指标变了,在回归中有R^2^,MS(平方)E 均方误差,MA(绝对)E平方绝对误差。
R^2^用来衡量模型回归结果的波动可被真实值验证的百分比,也暗示了模型在数值回归方面的能力。

无监督学习

数据聚类

主流的k-means采用的迭代算法,直观易懂并非常实用。

  • 容易收敛到局部最优解
  • 需要预先设定簇的数量
    可使用“肘部”观察法粗略地预估相对合理的类簇个数。

    数据降维

    主成分分析(PCA principal component analysis)
    相较于损失的少部分模型性能。维度压缩能够节省大量模型训练时间。

明天开始进阶篇

隐隐约约感觉不太对,这个没啥 基础啊 全是调用

Python机器学习及实践 课后小题的更多相关文章

  1. 《Python机器学习及实践:从零开始通往Kaggle竞赛之路》

    <Python 机器学习及实践–从零开始通往kaggle竞赛之路>很基础 主要介绍了Scikit-learn,顺带介绍了pandas.numpy.matplotlib.scipy. 本书代 ...

  2. Python机器学习及实践_从零开始通往KAGGLE竞赛之路PDF高清完整版免费下载|百度云盘|Python基础教程免费电子书

    点击获取提取码:i5nw Python机器学习及实践面向所有对机器学习与数据挖掘的实践及竞赛感兴趣的读者,从零开始,以Python编程语言为基础,在不涉及大量数学模型与复杂编程知识的前提下,逐步带领读 ...

  3. 《PYTHON机器学习及实践-从零开始通往KAGGLE竞赛之路》 分享下载

    转: <PYTHON机器学习及实践-从零开始通往KAGGLE竞赛之路> 分享下载 书籍信息 书名: PYTHON机器学习及实践-从零开始通往KAGGLE竞赛之路 标签: PYTHON机器学 ...

  4. Python机器学习及实践+从零开始通往Kaggle竞赛之路

    内容简介 本书面向所有对机器学习与数据挖掘的实践及竞赛感兴趣的读者,从零开始,以Python编程语言为基础,在不涉及大量数学模型与复杂编程知识的前提下,逐步带领读者熟悉并且掌握当下最流行的机器学习.数 ...

  5. 华南理工大学 Python第2章课后小测-2

    1.(单选)下列符号中,有()个是Python的关键字.(1)if    (2)lambda  (3)not   (4) For   (5)None(6)from  (7)True   (8)fina ...

  6. 华南理工大学 Python第2章课后小测-1

    1.(单选)"abc"的长度是3,"老师好"的长度是多少?(本题分数:4)A) 1B) 3C) 6D) 9您的答案:B  正确率:100%2.(单选)下面代码的 ...

  7. 华南理工大学 Python第1章课后小测

    1.(单选)计算机有两个基本特性:功能性和()性.(本题分数:5)A) 可存储B) 可计算C) 可通信D) 可编程您的答案:D  正确率:100%2.(单选)计算机硬件可以直接识别和执行的程序设计语言 ...

  8. 华南理工大学 Python第7章课后小测-2

    1.(单选)以下选项中使Python脚本程序转变为可执行程序的第三方库的是(本题分数:3)A) NetworkxB) pyinstallC) RequestsD) PyPDF2您的答案:B  正确率: ...

  9. 华南理工大学 Python第7章课后小测-1

    1.(单选)以下程序对字典进行排序,按字典键值从小到大排序,空白处的代码是(  ): dt={'b':6, 'c':2, 'a':4} s=sorted(dt.items(),key=_____) p ...

随机推荐

  1. HDU 6602 Longest Subarray (线段树)

    题意: 1e5的数组,c(1e5)种数字求最长的子串,使得其中每个出现的数字出现的次数为0次或者大于k次 思路: 枚举右端点i,维护当前右端点时,每个左端点的可行元素数量,当且仅当可行元素为c时更新答 ...

  2. How to do if sqlserver table identity column exceed limited ?

    script: select a.TABLE_NAME,a.COLUMN_NAME,a.DATA_TYPE, (CASE a.DATA_TYPE when 'int' then 'limited be ...

  3. 利用selenium模拟登陆

    第一部:利用selenium登陆 导入selenium库 from selenium import webdriver 明确模拟浏览器在电脑中存放的位置,比如我存在当前目录 chromePath = ...

  4. SpringBoot Jpa 自定义查询

    SpringBoot Jpa 自定义查询 持久层Domain public interface BaomingDao extends JpaRepository<BaomingBean,Inte ...

  5. win10电脑搭建网站

    新建网站之后,IIS错误提示是:在计算机“.”上没有找到服务W3SVC,需要在“启动或关闭windows功能”添加.net 3.5下面的两个程序. https://img-blog.csdn.net/ ...

  6. k8s系列---yaml文件格式

    https://www.bejson.com/validators/yaml_editor/ yaml文件大致格式解析,通过上面这个解析网站,可以看到yaml文件解析的格式长什么样,如果知道字典和列表 ...

  7. Tomcat 修改日志输出配置 定期删除日志

    tomcat的下的日志catalina.out 和 qc.log疯狂增长,以下是解决办法 我生产环境tomcat版本 Server version: Apache Tomcat/7.0.35 Serv ...

  8. Mac启动MongoDB报错:exception in initAndListen: NonExistentPath: Data directory /data/db not found., terminating

    这是主要错误: initAndListen中的异常:NonExistentPath:找不到数据目录/ data / db. 最新版的Mac系统Catalina发生了令人惊讶的更改:它不允许更改根目录( ...

  9. 制作OpenOffice的Docker镜像并添加中文字体解决乱码问题

    官网下载openoffice http://www.openoffice.org/download/index.html 本文使用的是Docker官方发布的CentOS7镜像作为基础镜像.镜像的获取方 ...

  10. 常用传输层协议(tcp/ip+udp)与常用应用层协议简述(http)

    一.计算机网络体系结构 二.TCP与UDP差异 1.TCP是面向连接的可靠传输,UDP是面向无连接的不可靠传输 面向连接表现在3次握手,4次挥手:可靠传输表现在未进行4次挥手时的差错重传,超时重传: ...