题目

显然这个题的期望就是逗你玩的,我们算出来总贡献除以\(nm\)就好了

设\(ans_t=\sum_{i=1}^n\sum_{j=1}^n(a_i+b_j)^t\)

二项式定理展开一下

\[ans_t=t!\sum_{i=0}^t\frac{\sum_{j=1}^na_j^i}{i!}\frac{\sum_{j=1}^mb_j^{t-i}}{(t-i)!}
\]

我们构造两个多项式\(A,B\)

\[A(x)=\sum_{i=1}^na_i^x,B(x)=\sum_{i=1}^mb_i^x
\]

显然这两个多项式一卷就是答案了

现在的问题就是求\(A\)和\(B\)了

考虑一下生成函数

显然\(A\)的生成函数就是每一个\(a_i\)的生成函数的和

对于一个\(a_i\)其生成函数显然是\(\frac{1}{1-a_ix}\)

于是

\[A=\sum_{i=1}^n\frac{1}{1-a_ix}
\]

暴力加显然是不行的,我们考虑到这些个多项式尽管每一个都是分式但是次数都是\(1\),于是我们可以分治做这个加法,就是合并左右两边的时候先通分再做加法,复杂度是\(O(nlog^2n)\)的

代码

#include<vector>
#include<cstdio>
#include<cstring>
#define re register
#define pb push_back
#define max(a,b) ((a)>(b)?(a):(b))
const int maxn=262144+5;
const int mod=998244353;
const int G[2]={3,(mod+1)/3};
int a[maxn],b[maxn],c[maxn],d[maxn],g[maxn],h[maxn],H[maxn],K[maxn],C[maxn];
int n,len,rev[maxn],m,T,fac[maxn],__[2][100],ifac[maxn],inv[maxn],A[2][maxn>>1];
std::vector<int> q[2][maxn],p[2][maxn];
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
inline int ksm(int a,int b) {
int S=1;for(;b;b>>=1,a=1ll*a*a%mod) if(b&1) S=1ll*S*a%mod;return S;
}
inline void NTT(int *f,int o) {
for(re int i=0;i<len;i++) if(i<rev[i]) std::swap(f[i],f[rev[i]]);
for(re int og1,p=0,i=2,ln=1;i<=len;i<<=1,ln<<=1,++p) {
if(!__[o][p]) og1=__[o][p]=ksm(G[o],(mod-1)/i);else og1=__[o][p];
for(re int t,og=1,l=0;l<len;l+=i,og=1)
for(re int x=l;x<l+ln;++x) {
t=1ll*og*f[x+ln]%mod;og=1ll*og*og1%mod;
f[x+ln]=(f[x]-t+mod)%mod,f[x]=(f[x]+t)%mod;
}
}
if(!o) return;
int Inv=ksm(len,mod-2);
for(re int i=0;i<len;i++) f[i]=1ll*f[i]*Inv%mod;
}
inline void Inv(int n,int *A,int *B) {
if(n==1) {B[0]=ksm(A[0],mod-2);return;}
Inv((n+1)>>1,A,B);
len=1;while(len<n+n-1) len<<=1;
for(re int i=0;i<len;i++) rev[i]=rev[i>>1]>>1|((i&1)?len>>1:0);
for(re int i=0;i<n;i++) C[i]=A[i];
for(re int i=n;i<len;i++) C[i]=0;NTT(C,0),NTT(B,0);
for(re int i=0;i<len;i++) B[i]=(2ll*B[i]-1ll*C[i]*B[i]%mod*B[i]%mod+mod)%mod;
NTT(B,1);for(re int i=n;i<len;i++) B[i]=0;
}
void cdq(int l,int r,int o,int t) {
if(l==r) {q[o][t].pb(1);q[o][t].pb(mod-A[o][l]);p[o][t].pb(1);return;}
int mid=l+r>>1;cdq(l,mid,o,t<<1),cdq(mid+1,r,o,t<<1|1);
len=1;while(len<=r-l+1) len<<=1;
for(re int i=0;i<len;i++) g[i]=h[i]=a[i]=b[i]=c[i]=d[i]=0;
for(re int i=0;i<len;i++) rev[i]=rev[i>>1]>>1|((i&1)?len>>1:0);
for(re int i=0;i<q[o][t<<1].size();i++) a[i]=q[o][t<<1][i];
for(re int i=0;i<p[o][t<<1].size();i++) c[i]=p[o][t<<1][i];
for(re int i=0;i<q[o][t<<1|1].size();i++) b[i]=q[o][t<<1|1][i];
for(re int i=0;i<p[o][t<<1|1].size();i++) d[i]=p[o][t<<1|1][i];
NTT(a,0),NTT(b,0),NTT(c,0),NTT(d,0);
for(re int i=0;i<len;i++) g[i]=1ll*a[i]*b[i]%mod;
for(re int i=0;i<len;i++) h[i]=(1ll*a[i]*d[i]%mod+1ll*b[i]*c[i]%mod)%mod;
NTT(g,1),NTT(h,1);
for(re int i=0;i<r-l+1;i++) p[o][t].pb(h[i]);
for(re int i=0;i<=r-l+1;i++) q[o][t].pb(g[i]);
}
int main() {
n=read(),m=read();inv[1]=1;ifac[0]=1;fac[0]=1;
for(re int i=1;i<=n;i++) A[0][i]=read();
for(re int i=1;i<=m;i++) A[1][i]=read();
cdq(1,n,0,1),cdq(1,m,1,1);T=read();
for(re int i=2;i<=T;i++) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
for(re int i=1;i<=T;i++) fac[i]=1ll*fac[i-1]*i%mod,ifac[i]=1ll*ifac[i-1]*inv[i]%mod;
memset(a,0,sizeof(a)),memset(b,0,sizeof(b));
memset(c,0,sizeof(c)),memset(d,0,sizeof(d));
for(re int i=0;i<p[0][1].size();i++) a[i]=p[0][1][i];
for(re int i=0;i<p[1][1].size();i++) b[i]=p[1][1][i];
for(re int i=0;i<q[0][1].size();i++) c[i]=q[0][1][i];
for(re int i=0;i<q[1][1].size();i++) d[i]=q[1][1][i];
Inv(T+1,c,H),Inv(T+1,d,K);
int U=max(n,m);U=max(U,T);
len=1;while(len<=T+U) len<<=1;
for(re int i=0;i<len;i++) rev[i]=rev[i>>1]>>1|((i&1)?len>>1:0);
NTT(a,0),NTT(b,0),NTT(H,0),NTT(K,0);
for(re int i=0;i<len;i++) a[i]=1ll*a[i]*H[i]%mod;
for(re int i=0;i<len;i++) b[i]=1ll*b[i]*K[i]%mod;
NTT(a,1),NTT(b,1);
for(re int i=T+1;i<len;i++) a[i]=b[i]=0;
for(re int i=0;i<=T;i++) a[i]=1ll*a[i]*ifac[i]%mod;
for(re int i=0;i<=T;i++) b[i]=1ll*b[i]*ifac[i]%mod;
NTT(a,0),NTT(b,0);
for(re int i=0;i<len;i++) a[i]=1ll*a[i]*b[i]%mod;
NTT(a,1);
int Inv=ksm(1ll*n*m%mod,mod-2);
for(re int i=1;i<=T;i++)
printf("%d\n",1ll*Inv*a[i]%mod*fac[i]%mod);
return 0;
}

还有压行真是好看

【LGP4705】玩游戏的更多相关文章

  1. 原生JS实战:写了个一边玩游戏,一边记JS的API的游戏

    本文是苏福的原创文章,转载请注明出处:苏福CNblog:http://www.cnblogs.com/susufufu/p/5878913.html 本程序[一边玩游戏,一边记JS的API]是本人的个 ...

  2. bzoj4730: Alice和Bob又在玩游戏

    Description Alice和Bob在玩游戏.有n个节点,m条边(0<=m<=n-1),构成若干棵有根树,每棵树的根节点是该连通块内编号最 小的点.Alice和Bob轮流操作,每回合 ...

  3. 小易邀请你玩一个数字游戏,小易给你一系列的整数。你们俩使用这些整数玩游戏。每次小易会任意说一个数字出来,然后你需要从这一系列数字中选取一部分出来让它们的和等于小易所说的数字。 例如: 如果{2,1,2,7}是你有的一系列数,小易说的数字是11.你可以得到方案2+2+7 = 11.如果顽皮的小易想坑你,他说的数字是6,那么你没有办法拼凑出和为6 现在小易给你n个数,让你找出无法从n个数中选取部分求和

    小易邀请你玩一个数字游戏,小易给你一系列的整数.你们俩使用这些整数玩游戏.每次小易会任意说一个数字出来,然后你需要从这一系列数字中选取一部分出来让它们的和等于小易所说的数字. 例如: 如果{2,1,2 ...

  4. cdoj 1136 邱老师玩游戏 树形背包

    邱老师玩游戏 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/problem/show/1136 Desc ...

  5. win7系统玩游戏不能全屏的解决办法

    1.修改注册表中的显示器的参数设置   Win键+R键,打开运行窗口,输入regedit回车,这样就打开了注册表编辑器,然后,定位到以下位置:   HKEY_LOCAL_MACHINE\SYSTEM\ ...

  6. 【用PS3手柄在安卓设备上玩游戏系列】连接手柄和设备

    背景 硬件要求1:PS3 手柄 + 手柄配套的USB线 硬件要求2:已经获得 ROOT 权限并且支持蓝牙的安卓设备 软件要求1:Sixaxis Compatibility Checker PS3 手柄 ...

  7. UESTC_邱老师玩游戏 2015 UESTC Training for Dynamic Programming<Problem G>

    G - 邱老师玩游戏 Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submi ...

  8. 【特殊的图+DP】【11月校赛】大家一起玩游戏

    大家一起玩游戏 Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Submi ...

  9. 洛谷 P4705 玩游戏 解题报告

    P4705 玩游戏 题意:给长为\(n\)的\(\{a_i\}\)和长为\(m\)的\(\{b_i\}\),设 \[ f(x)=\sum_{k\ge 0}\sum_{i=1}^n\sum_{j=1}^ ...

  10. Luogu P4705 玩游戏

    题目描述 Alice 和 Bob 又在玩游戏. 对于一次游戏,首先 Alice 获得一个长度为 ​ 的序列 ​,Bob 获得一个长度为 ​ 的序列 bb.之后他们各从自己的序列里随机取出一个数,分别设 ...

随机推荐

  1. 几个实用的js函数

    在阅读JavaScript DOM编程艺术这本书时看到了一些比较实用的代码. //加载多个window.onload事件 function addLoadEvent(func) { var oldon ...

  2. python2x 安装 psutil

    安装psutil模块: wget https://pypi.python.org/packages/source/p/psutil/psutil-2.0.0.tar.gz --no-check-cer ...

  3. [NOIP2005] 过河【Dp,思维题,缩点】

    Online Judge:Luogu P1052 Label:Dp,思维题,缩点,数学 题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子 ...

  4. 数据库MySQL--联合查询

    应用场景:当要查询的结果来自多个表,且多个表没有直接的连接关系,但查询的信息一致时 语法: 查询语句1 union(all) 查询语句2 union(all) ..... 注:多条查询语句的查询列数要 ...

  5. jupyter|魔法函数问题| UsageError: Line magic function `%` not found

    问题: jupyter notebook 使用魔法函数% matplotlib inline,报错:UsageError: Line magic function `%` not found 解决: ...

  6. 廖雪峰Java16函数式编程-2Stream-1Stream简介

    1. Stream Java8引入全新的Stream API 位于java.util.stream包 1.1 Stream API不同于java.io的InputStream/OutputStream ...

  7. 织梦怎么调用栏目SEO标题

    点击[模板][默认模板管理]找到模板文件名[list_article.htm],点击模板后面的修改,弹出修改模板代码页面.更改模板文件中<title>{dede:field.title/} ...

  8. linxu(centos)安装nginx

    安装make: yum -y install gcc automake autoconf libtool make 安装g++: yum install gcc gcc-c++ 下面正式开始 ---- ...

  9. .NETFramework:template

    ylbtech-.NETFramework: 1.返回顶部   2.返回顶部   3.返回顶部   4.返回顶部   5.返回顶部     6.返回顶部   作者:ylbtech出处:http://y ...

  10. javaSpring学习总结day_02

    使用注解注入: 1.用于创建bean对象 @Component: 作用:相当于配置了一个bean标签 位置:类上面 属性:value,含义是bean的id,当不写时,有默认值,默认值是当前类的短名,首 ...