传送门

题意

  有 n 种立方体,每种都有无穷多个。

  要求选一些立方体摞成一根尽量高的柱子(在摞的时候可以自行选择哪一条边作为高);

  立方体 a 可以放在立方体 b 上方的前提条件是立方体 a 的底面长宽分别严格小于立方体 b 的底面长宽;

  求最大高度;

思路

  对于立方体 a(x,y,z)((长,宽,高)),因为每个立方体都有无穷个,所以 a 要拆成三个;

  a1(x,y,z) , a2(x,z,y) , a3(y,z,x) 即分别以 z,y,x 作为高;

  对于任意两个立方体 a,b ,如果 b 可以放在 a 的上方,那么连一条边 a->b,意思是 a 的上方可以放 b;

  预处理出所有的点,以此构图,然后求出高最大的那条路经的高,输出即可;

AC代码

 #include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mem(a,b) memset(a,b,sizeof(a))
const int maxn=; int n;
int num;
int head[maxn];
struct Edge
{
int to;
int next;
}G[maxn*maxn];
void addEdge(int u,int v)
{
G[num]={v,head[u]};
head[u]=num++;
}
struct Date
{
int x,y;
}_date[maxn];
ll h[maxn];
ll dp[maxn];///dp[i]:以立方体i为最底层的立方体可以形成的最大高度 ll F(int u)
{
ll &ans=dp[u];
if(ans != -)
return ans;
ans=h[u];
for(int i=head[u];~i;i=G[i].next)
{
int v=G[i].to;
ans=max(ans,F(v)+h[u]);
}
return ans;
}
bool isSat(int i,int j)
{
return _date[i].x > _date[j].x && _date[i].y > _date[j].y ||
_date[i].x > _date[j].y && _date[i].y > _date[j].x ? true:false;
}
ll Solve()
{
///最多可能加入(3*n)^2条边
///G数组不要开小了
for(int i=;i <= *n;++i)
for(int j=;j <= *n;++j)
if(isSat(i,j))///判断立方体j是否可以放在立方体i上
addEdge(i,j);
mem(dp,-);
for(int i=;i <= *n;++i)///以i作为底层的立方体
dp[i]=F(i); return *max_element(dp+,dp+*n+);
}
void Init()
{
num=;
mem(head,-);
}
int main()
{
int kase=;
while(~scanf("%d",&n) && n)
{
Init();
for(int i=;i <= n;++i)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z); ///第i个立方体变为三个编号为i*3,i*3-1,i*3-2的立方体
int cnt=i*;
_date[cnt]={x,y};
h[cnt--]=z; _date[cnt]={x,z};
h[cnt--]=y; _date[cnt]={y,z};
h[cnt--]=x;
}
printf("Case %d: maximum height = %lld\n",++kase,Solve());
}
return ;
}

UVA 437 "The Tower of Babylon" (DAG上的动态规划)的更多相关文章

  1. UVA 437 The Tower of Babylon(DAG上的动态规划)

    题目大意是根据所给的有无限多个的n种立方体,求其所堆砌成的塔最大高度. 方法1,建图求解,可以把问题转化成求DAG上的最长路问题 #include <cstdio> #include &l ...

  2. UVa 437 The Tower of Babylon(经典动态规划)

    传送门 Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details ...

  3. UVa 437 The Tower of Babylon

    Description   Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...

  4. UVa 437 The Tower of Babylon(DP 最长条件子序列)

     题意  给你n种长方体  每种都有无穷个  当一个长方体的长和宽都小于还有一个时  这个长方体能够放在还有一个上面  要求输出这样累积起来的最大高度 由于每一个长方体都有3种放法  比較不好控制 ...

  5. DP(DAG) UVA 437 The Tower of Babylon

    题目传送门 题意:给出一些砖头的长宽高,砖头能叠在另一块上要求它的长宽都小于下面的转头的长宽,问叠起来最高能有多高 分析:设一个砖头的长宽高为x, y, z,那么想当于多了x, z, y 和y, x, ...

  6. UVA - 437 The Tower of Babylon(dp-最长递增子序列)

    每一个长方形都有六种放置形态,其实可以是三种,但是判断有点麻烦直接用六种了,然后按照底面积给这些形态排序,排序后就完全变成了LIS的问题.代码如下: #include<iostream> ...

  7. UVA 437 The Tower of Babylon巴比伦塔

    题意:有n(n≤30)种立方体,每种有无穷多个.要求选一些立方体摞成一根尽量高的柱子(可以自行选择哪一条边作为高),使得每个立方体的底面长宽分别严格小于它下方立方体的底面长宽. 评测地址:http:/ ...

  8. UVa 103 Stacking Boxes --- DAG上的动态规划

    UVa 103 题目大意:给定n个箱子,每个箱子有m个维度, 一个箱子可以嵌套在另一个箱子中当且仅当该箱子的所有的维度大小全部小于另一个箱子的相应维度, (注意箱子可以旋转,即箱子维度可以互换),求最 ...

  9. UVA 1025 "A Spy in the Metro " (DAG上的动态规划?? or 背包问题??)

    传送门 参考资料: [1]:算法竞赛入门经典:第九章 DAG上的动态规划 题意: Algorithm城市的地铁有 n 个站台,编号为 1~n,共有 M1+M2 辆列车驶过: 其中 M1 辆列车从 1 ...

随机推荐

  1. Effective Modern C++:07并发API

    C++11的志伟功勋之一,就是将并发融入了语言和库中,因此在C++的历史上,程序员可以首次跨越所有平台撰写具有标准行为的多线程程序. 35:优先选用基于任务而非基于线程的程序设计 如果需要以异步的方式 ...

  2. Linux常用命令5 用户管理命令

    1.用户管理命令:useradd 所在路径:/usr/bin/useradd      执行权限:root 语法:useradd 用户名 功能描述:添加新用户 例如:useradd hzw userd ...

  3. R语言处理Web数据

    R语言处理Web数据 许多网站提供的数据,以供其用户的消费.例如,世界卫生组织(WHO)提供的CSV,TXT和XML文件的形式的健康和医疗信息报告.基于R程序,我们可以通过编程提取这些网站的具体数据. ...

  4. Python编码---转自金角大王

    本节内容 编码回顾 编码转换 Python的bytes类型 编码回顾 在备编码相关的课件时,在知乎上看到一段关于Python编码的回答 这哥们的这段话说的太对了,搞Python不把编码彻底搞明白,总有 ...

  5. iOS:你App的设置做对了吗?

    http://www.cocoachina.com/ios/20151217/14707.html iOS 8及以上版本最不为人知的一个特点是与应用设置的深层链接,用户可以根据APP的需要授权启用位置 ...

  6. 连接池c3p0

    连接池c3p0 C3P0:hibernate和spring使用,有自动回收空闲连接的功能. 使用步骤: 1.导入jar包(c3p0-0.9.1.2.jar) 2.使用api a.硬编码(不推荐) ne ...

  7. bzoj2752 高速公路

      列式子: 如果把从i号收费站到i+1号收费站之间路段编号设为i. 假如查询l号收费站到r号收费站之间的期望值. $ Ans_{l,r} = \sum\limits_{i=l}^{r-1} v_i ...

  8. SWF在线绘本批量制作高质量PDF的新方法(重点在批量制作)

    SWF在线绘本批量制作高质量PDF的新方法(重点在批量制作) 2012-12-21  未来决定...       http://www.ebama.net/thread-107643-1-1.html ...

  9. CSS实现导航栏底部动态滚动条效果

    预习了CSS3部分的新知识,想着在不使用JS的情况下实现导航栏滚动条效果,如下: 实现滚动条效果,其实就是在<li></li>标签中让<span>元素的宽度由0变化 ...

  10. Libevent:6辅助函数以及类型

    在头文件<event2/util.h>中定义了许多有用的函数和类型来帮助实现可移植的程序.Libevent在内部使用这些类型和函数. 一:基本类型 evutil_socket_t 除了Wi ...