给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数。

请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible。

数据保证不存在负权回路。

输入格式

第一行包含整数n和m。

接下来m行每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。

输出格式

输出一个整数,表示1号点到n号点的最短距离。

如果路径不存在,则输出”impossible”。

数据范围

1≤n,m≤1051≤n,m≤105,
图中涉及边长绝对值均不超过10000。

输入样例:

3 3
1 2 5
2 3 -3
1 3 4

输出样例:

2

对Bellman-ford算法的队列优化

代码:
//邻接表存储
//n=1e5,不能用邻接表 import java.util.ArrayDeque;
import java.util.Arrays;
import java.util.Scanner; public class Main{
static final int N=100005, INF=0x3f3f3f3f;
static int h[]=new int[N];
static int e[]=new int[N];
static int ne[]=new int[N];
static int w[]=new int[N];
static int dis[]=new int[N];
static boolean vis[]=new boolean[N];
static int n,m,idx;
static void add(int a,int b,int c){
e[idx]=b;
w[idx]=c;
ne[idx]=h[a];
h[a]=idx++;
}
static int spfa(){
ArrayDeque<Integer> q = new ArrayDeque<Integer>();
Arrays.fill(dis, INF);
dis[1]=0;
q.offer(1);
vis[1]=true;//vis数组表示当前点是否在队列中
while(!q.isEmpty()){
int t=q.poll();
vis[t]=false;//不在队列中,置为false
for(int i=h[t];i!=-1;i=ne[i]){
int j=e[i];
if(dis[j]>dis[t]+w[i]){
dis[j]=dis[t]+w[i];
if(!vis[j]){
vis[j]=true;
q.offer(j);
}
}
}
}
if(dis[n]==INF) return -1;
else return dis[n];
}
public static void main(String[] args) {
Scanner scan=new Scanner(System.in);
n=scan.nextInt();
m=scan.nextInt();
Arrays.fill(h, -1);
while(m-->0){
int a=scan.nextInt();
int b=scan.nextInt();
int c=scan.nextInt();
add(a,b,c);
}
int t=spfa();
if(t==-1) System.out.println("impossible");
else System.out.println(t);
}
}

851. spfa求最短路(spfa算法模板)的更多相关文章

  1. SPFA求最短路——Bellman-Ford算法的优化

    SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环.SPFA 最坏情况下复杂度和朴素 Bellman-Ford 相同,为 O(VE), ...

  2. ACM - 最短路 - AcWing 851 spfa求最短路

    AcWing 851 spfa求最短路 题解 以此题为例介绍一下图论中的最短路算法 \(Bellman\)-\(Ford\) 算法.算法的步骤和正确性证明参考文章最短路径(Bellman-Ford算法 ...

  3. 基于bellman-ford算法使用队列优化的spfa求最短路O(m),最坏O(n*m)

    acwing851-spfa求最短路 #include<iostream> #include<cstring> #include<algorithm> #inclu ...

  4. spfa求次短路

    思路:先算出每个点到1的最短路d1[i],记录下路径,然后枚举最短路上的边 删掉之后再求一遍最短路,那么这时的最短路就可能是答案. 但是这个做法是错误的,可以被卡掉. 比如根据下面的例题生成的一个数据 ...

  5. POJ 1815 - Friendship - [拆点最大流求最小点割集][暴力枚举求升序割点] - [Dinic算法模板 - 邻接矩阵型]

    妖怪题目,做到现在:2017/8/19 - 1:41…… 不过想想还是值得的,至少邻接矩阵型的Dinic算法模板get√ 题目链接:http://poj.org/problem?id=1815 Tim ...

  6. acwing 851. spfa求最短路 模板

    地址 https://www.acwing.com/problem/content/description/853/ 给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数. 请你求出 ...

  7. 851. spfa求最短路

    给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数. 请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible. 数据保证不存在负权回路. 输入格式 ...

  8. AcWing 851. spfa求最短路 边权可能为负数。 链表 队列

    #include <cstring> #include <iostream> #include <algorithm> #include <queue> ...

  9. Holy Grail【spfa求最短路】

    题目链接:https://www.jisuanke.com/contest/3004?view=challenges 题目大意: 1.一个无向图,给出六个顶点,添六条边,但是添边是有限制的.每次添边的 ...

随机推荐

  1. [Python-memcached]Python操作memcached

    安装python-memchached插件 pip install python-memcached Collecting python-memcached Downloading python_me ...

  2. Idea生成代码段

    使用快捷键(ctrl+alt+s)找到:从idea的菜单File->Settings->Editor->Live Templates 先添加Template Group,然后添加Li ...

  3. React之虚拟DOM中的Diff算法

    一.React中的setState ( 异步函数,异步获取数据 ) 若操作的时间间隔短,它可以将多个setState结合成一个setState,减少虚拟DOM的比对次数,提高性能 二.同层虚拟DOM对 ...

  4. .gitignore配置规则

    1.gitignore文件 在git中如果想忽略掉某个文件,不让这个文件提交到版本库中,可以使用修改 .gitignore 文件的方法.这个文件每一行保存了一个匹配的规则例如: # 此为注释 – 将被 ...

  5. PHPExcel使用

       参考链接: 官方github:https://github.com/PHPOffice/PHPExcel 设置表格字体颜色等操作:http://www.cnblogs.com/grimm/p/9 ...

  6. 零基础学到什么程度可以找一份web前端工作?

    能找到一份前端开发工作,首先你起码得是一个合格的初级前端工程师.那么,什么是初级前端工程师?初级前端工程师都会做些什么?这个问题需要分为以下几个方面来说: 一.对应岗位的工作职责初级前端,主要负责产品 ...

  7. React Native运行出现Could not find "iPhone X" simulator

    打开项目文件夹下 node_modules/react-native/local-cli/runIOS/findMatchingSimulator.js 查找 if (!version.startsW ...

  8. ES相关知识

    ElkStack介绍 对于日志来说,最常见的需求就是收集.存储.查询.展示,开源社区正好有相对应的开源项目:logstash(收集).elasticsearch(存储+搜索).kibana(展示),我 ...

  9. Learning hard 网络编程

    1.1网络分层总览 网络上的计算机之所以可以互相通信,是因为它们都遵守着公认的互联网协议,就如同人与人的交流一样,两个人能够交流,就必须知道对方的语言,计算机的网络通信可归结为网络中层与层之间的通信, ...

  10. Python 编程入门(2):复杂数据类型(列表,字典)

    以下所有例子都基于最新版本的 Python,为了便于消化,每一篇都尽量短小精悍,希望你能尽力去掌握 Python 编程的「概念」,可以的话去动手试一下这些例子(就算目前还没完全搞懂),加深理解. 在 ...