给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数。

请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible。

数据保证不存在负权回路。

输入格式

第一行包含整数n和m。

接下来m行每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。

输出格式

输出一个整数,表示1号点到n号点的最短距离。

如果路径不存在,则输出”impossible”。

数据范围

1≤n,m≤1051≤n,m≤105,
图中涉及边长绝对值均不超过10000。

输入样例:

3 3
1 2 5
2 3 -3
1 3 4

输出样例:

2

对Bellman-ford算法的队列优化

代码:
//邻接表存储
//n=1e5,不能用邻接表 import java.util.ArrayDeque;
import java.util.Arrays;
import java.util.Scanner; public class Main{
static final int N=100005, INF=0x3f3f3f3f;
static int h[]=new int[N];
static int e[]=new int[N];
static int ne[]=new int[N];
static int w[]=new int[N];
static int dis[]=new int[N];
static boolean vis[]=new boolean[N];
static int n,m,idx;
static void add(int a,int b,int c){
e[idx]=b;
w[idx]=c;
ne[idx]=h[a];
h[a]=idx++;
}
static int spfa(){
ArrayDeque<Integer> q = new ArrayDeque<Integer>();
Arrays.fill(dis, INF);
dis[1]=0;
q.offer(1);
vis[1]=true;//vis数组表示当前点是否在队列中
while(!q.isEmpty()){
int t=q.poll();
vis[t]=false;//不在队列中,置为false
for(int i=h[t];i!=-1;i=ne[i]){
int j=e[i];
if(dis[j]>dis[t]+w[i]){
dis[j]=dis[t]+w[i];
if(!vis[j]){
vis[j]=true;
q.offer(j);
}
}
}
}
if(dis[n]==INF) return -1;
else return dis[n];
}
public static void main(String[] args) {
Scanner scan=new Scanner(System.in);
n=scan.nextInt();
m=scan.nextInt();
Arrays.fill(h, -1);
while(m-->0){
int a=scan.nextInt();
int b=scan.nextInt();
int c=scan.nextInt();
add(a,b,c);
}
int t=spfa();
if(t==-1) System.out.println("impossible");
else System.out.println(t);
}
}

851. spfa求最短路(spfa算法模板)的更多相关文章

  1. SPFA求最短路——Bellman-Ford算法的优化

    SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环.SPFA 最坏情况下复杂度和朴素 Bellman-Ford 相同,为 O(VE), ...

  2. ACM - 最短路 - AcWing 851 spfa求最短路

    AcWing 851 spfa求最短路 题解 以此题为例介绍一下图论中的最短路算法 \(Bellman\)-\(Ford\) 算法.算法的步骤和正确性证明参考文章最短路径(Bellman-Ford算法 ...

  3. 基于bellman-ford算法使用队列优化的spfa求最短路O(m),最坏O(n*m)

    acwing851-spfa求最短路 #include<iostream> #include<cstring> #include<algorithm> #inclu ...

  4. spfa求次短路

    思路:先算出每个点到1的最短路d1[i],记录下路径,然后枚举最短路上的边 删掉之后再求一遍最短路,那么这时的最短路就可能是答案. 但是这个做法是错误的,可以被卡掉. 比如根据下面的例题生成的一个数据 ...

  5. POJ 1815 - Friendship - [拆点最大流求最小点割集][暴力枚举求升序割点] - [Dinic算法模板 - 邻接矩阵型]

    妖怪题目,做到现在:2017/8/19 - 1:41…… 不过想想还是值得的,至少邻接矩阵型的Dinic算法模板get√ 题目链接:http://poj.org/problem?id=1815 Tim ...

  6. acwing 851. spfa求最短路 模板

    地址 https://www.acwing.com/problem/content/description/853/ 给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数. 请你求出 ...

  7. 851. spfa求最短路

    给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数. 请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible. 数据保证不存在负权回路. 输入格式 ...

  8. AcWing 851. spfa求最短路 边权可能为负数。 链表 队列

    #include <cstring> #include <iostream> #include <algorithm> #include <queue> ...

  9. Holy Grail【spfa求最短路】

    题目链接:https://www.jisuanke.com/contest/3004?view=challenges 题目大意: 1.一个无向图,给出六个顶点,添六条边,但是添边是有限制的.每次添边的 ...

随机推荐

  1. FTP服务器配置http访问(配置nginx+ftp服务器)

    一.搭建nginx服务器 先安装nginx服务器 # yum install nginx -y 启动nginx服务 # systemctl start nginx 浏览器访问:http://192.1 ...

  2. Shiro -- (二) 身份验证基本流程

    简介: 在 shiro 中,用户需要提供 principals (身份)和 credentials(证明)给 shiro,从而应用能验证用户身份: principals:身份,即主体的标识属性,可以是 ...

  3. redis_入门

    Redis_day01 1. NoSql 1.1 NoSql是什么 NoSQL(不仅仅是SQL not only SQL),泛指非关系型的数据库.随着互联网web2.0网站的兴起,传统的关系数据库在处 ...

  4. WebSocket以及socketIO的使用

    简介 WebSocket 使得客户端和服务器之间的数据交换变得更加简单,允许服务端主动向客户端推送数据.在 WebSocket API 中,浏览器和服务器只需要完成一次握手,两者之间就直接可以创建持久 ...

  5. 12-Factor与云原生Part2

    12-Factor与云原生Part2 12-Factor 为构建如下的 SaaS 应用提供了方法论: 使用声明式格式来搭建自动化,从而使新的开发者花费最少的学习成本加入这个项目 和底层操作系统保持简洁 ...

  6. MySQL存储过程和游标

    一.存储过程 什么是存储过程,为什么要使用存储过程以及如何使用存储过程,并且介绍创建和使用存储过程的基本语法. 什么是存储过程: 存储过程可以说是一个记录集,它是由一些T-SQL语句组成的代码块,这些 ...

  7. 高性能异步SRAM技术角度

    当前有两个不同系列的异步SRAM:快速SRAM(支持高速存取)和低功耗SRAM(低功耗).从技术角度看来,这种权衡是合理的.在低功耗SRAM中,通过采用特殊栅诱导漏极泄漏(GIDL)控制技术控制待机电 ...

  8. Spring Boot从入门到精通(一)搭建第一个Spring Boot程序

    Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程.该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置.通过 ...

  9. 关于PHP连接上MySQL但不能插入数据

    出现这种情况,有三种可能 1.SQL语句有问题 insert into table_name(field1,field2...) values(value1,value2...); 先在MySQL中粘 ...

  10. MySql概述及入门(五)

    MySql概述及入门(五) MySQL集群搭建之读写分离 读写分离的理解 为解决单数据库节点在高并发.高压力情况下出现的性能瓶颈问题,读写分离的特性包括会话不开启事务,读语句直接发送到 salve 执 ...